Serological and Molecular Methods to Study Epidemiological Aspects of Human T-Cell Lymphotropic Virus Type 1 Infection.

Methods Mol Biol

Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, 28 rue du Dr. Roux, F-75015, Paris, France.

Published: February 2018

We estimated that at least 5-10 million individuals are infected with HTLV-1. Importantly, this number is based on the study of nearly 1.5 billion people living in known human T-cell lymphotropic virus type 1 (HTLV-1) endemic areas, for which reliable epidemiological data are available. However, for some highly populated regions including India, the Maghreb, East Africa, and some regions of China, no consistent data are yet available which prevents a more accurate estimation. Thus, the number of HTLV-1 infected people in the world is probably much higher. The prevalence of HTLV-1 prevalence varies depending on age, sex, and economic level in most HTLV-1 endemic areas. HTLV-1 seroprevalence gradually increases with age, especially in women. HTLV-1 has a simian origin and was originally acquired by humans through interspecies transmission from STLV-1 infected monkeys in the Old World. Three main modes of HTLV-1 transmission have been described; (1) from mother-to-child after prolonged breast-feeding lasting more than six months, (2) through sexual intercourse, which mainly, but not exclusively, occurs from male to female and lastly, (3) from contaminated blood products, which contain HTLV-1 infected lymphocytes. In specific areas, such as Central Africa, zoonotic transmission from STLV-1 infected monkeys to humans is still ongoing.The diagnostic methods used to study the epidemiological aspects of HTLV-1 infection mainly consist of serological assays for the detection of antibodies specifically directed against different HTLV-1 antigens. Screening tests are usually based on enzyme-linked immunoabsorbent assay (ELISA), chemiluminescence enzyme-linked immunoassay (CLEIA) or particle agglutination (PA). Confirmatory tests include mostly Western blots (WB)s or innogenetics line immunoassay (INNO-LIA™) and to a lesser extent immunofluorescence assay (IFA). The search for integrated provirus in the DNA from peripheral blood cells can be performed by qualitative and/or quantitative polymerase chain reaction (qPCR). qPCR is widely used in most diagnostic laboratories and quantification of proviral DNA is useful for the diagnosis and follow-up of HTLV-1 associated diseases such as adult T-cell leukemia (ATL) and tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). PCR also provides amplicons for further sequence analysis to determine the HTLV-1 genotype present in the infected person. The use of new generation sequencing methodologies to molecularly characterize full and/or partial HTLV-1 genomic regions is increasing. HTLV-1 genotyping generates valuable molecular epidemiological data to better understand the evolutionary history of this virus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6872-5_1DOI Listing

Publication Analysis

Top Keywords

htlv-1
15
methods study
8
study epidemiological
8
epidemiological aspects
8
human t-cell
8
t-cell lymphotropic
8
lymphotropic virus
8
virus type
8
htlv-1 endemic
8
endemic areas
8

Similar Publications

We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.

View Article and Find Full Text PDF

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

CXCL-10 in Cerebrospinal Fluid Detects Neuroinflammation in HTLV-1-Associated Myelopathy with High Accuracy.

Viruses

January 2025

Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.

Background And Objectives: HTLV-1-associated myelopathy (HAM) is a chronic progressive inflammatory disease of the spinal cord. This study assesses the diagnostic accuracy of the neuroinflammatory biomarkers neopterin and cysteine-X-cysteine motif chemokine ligand 10 (CXCL-10) in cerebrospinal fluid (CSF) for HAM.

Methods: CSF samples from 75 patients with neurological disorders-33 with HAM (Group A), 19 HTLV-1-seronegative with other neuroinflammatory diseases (Group B), and 23 HTLV-1-seronegative with non-neuroinflammatory diseases (Group C)-were retrospectively evaluated.

View Article and Find Full Text PDF

New treatments for adult T-cell leukemia/lymphoma.

Leuk Res

January 2025

Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E 74th St., New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA. Electronic address:

Adult T cell leukemia lymphoma (ATL) is a mature T cell neoplasm caused by human T-cell lymphotropic virus type 1 (HTLV-1). ATL is endemic in specific geographic regions of the world closely related to areas with high prevalence of HLTV-1 infection, including Southwestern Japan, the Caribbean Basin, Central Africa, South America, Northern and Central Australia. HLTV-1 is primarily transmitted through breastmilk in asymptomatic carriers with a long latency period before transformation into ATL in 3 - 5 % of carriers after acquisition of multiple leukemogenic mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!