Conjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated. These mutants presented various genetic modifications, including the elimination of β-oxidation (pox1-6∆), the inability to store lipids as triglycerides (dga1∆ dga2∆ are1∆ lro1∆), and the overexpression of the Y. lipolytica ∆12-desaturase gene (YlFAD2) under the control of the constitutive pTEF promoter. All strains received two copies of the pTEF-oPAI or pPOX-oPAI expression cassettes; PAI encodes linoleic acid isomerase in Propionibacterium acnes. The strains were cultured in neosynthesis or bioconversion medium in flasks or a bioreactor. The strain combining the three modifications mentioned above showed the best results: when it was grown in neosynthesis medium in a flask, CLAs represented 6.5% of total fatty acids and in bioconversion medium in a bioreactor, and CLA content reached 302 mg/L. In a previous study, a CLA degradation rate of 117 mg/L/h was observed in bioconversion medium. Here, by eliminating β-oxidation, we achieved a much lower rate of 1.8 mg/L/h.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442254PMC
http://dx.doi.org/10.1007/s00253-017-8240-6DOI Listing

Publication Analysis

Top Keywords

bioconversion medium
12
conjugated linoleic
8
linoleic acids
8
oleaginous yeast
8
yeast yarrowia
8
yarrowia lipolytica
8
metabolic engineering
4
engineering strategy
4
strategy producing
4
producing conjugated
4

Similar Publications

Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.

View Article and Find Full Text PDF

d-Xylitol Production from Sugar Beet Press Pulp Hydrolysate with Engineered .

Microorganisms

December 2024

Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.

d-Xylitol is a low-calorie and anti-cariogenic sweetener suitable for diabetic patients, making it a valuable ingredient in various health-related applications. In this study, we investigated the production of d-xylitol from l-arabinose derived from sugar beet press pulp (SBPP) hydrolysate using an engineered strain. Initial batch studies applying stirred tank bioreactors demonstrated d-xylitol production of 4.

View Article and Find Full Text PDF

In this study, the total content of REEs ranged from 1.32 to 67.74 μg/kg, with a predominant presence of light REEs.

View Article and Find Full Text PDF

Enhancing fish sludge bioconversion kinetics for nutrient recovery in aquaponics using a modified biological aerated filter with a novel media of polyhedral hollow spheres.

J Environ Manage

December 2024

School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan, 572025, China. Electronic address:

Nutrient recovery from aquaculture sludge is vital for promoting hydroponic plant growth and achieving near-zero solid waste discharge in aquaponic systems. Modified biological aerated filters (MBAFs) are promising because of the dual capabilities of aquaculture sludge collection and aerobic mineralization. However, the bioconversion kinetics, which is indirectly related to the packed media, need to be improved.

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!