Sensing environmental stimuli is critically important for bacteria when faced with the multitude of adversities presented within the host. Responding appropriately to these signals and in turn integrating these responses into the regulatory network of the cell allows bacteria to control precisely when and where they should establish colonization. D-serine is an abundant metabolite of the human urinary tract but is a toxic metabolite for that lack a D-serine tolerance locus. Enterohaemorrhagic (EHEC) cannot catabolize D-serine for this reason and colonize the large intestine specifically, an environment low in D-serine. EHEC can however use D-serine sensing to repress colonization thus signaling the presence of an unfavorable environment. In our recent work (Connolly, et al. PLoS Pathogens (2016) 12(1): e1005359), we describe the discovery of a functional and previously uncharacterized D-serine uptake system in . The genes identified are highly conserved in all lineages but are regulated differentially in unique pathogenic backgrounds. The study identified that EHEC, counter-intuitively, increase D-serine uptake in its presence but that this is a tolerated process and is used to increase the transcriptional response to this signal. It was also found that the system has been integrated into the transcriptional network of EHEC-specific virulence genes, demonstrating an important pathotype-specific adaptation of core genome components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349093 | PMC |
http://dx.doi.org/10.15698/mic2016.04.494 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.
Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.
Nat Commun
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
: To establish a mouse model of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and assess the potential therapeutic benefits of D-serine supplementation in mitigating synaptic plasticity impairments induced by anti-NMDAR antibodies. : Anti-NMDAR antibodies were purified from cerebrospinal fluid (CSF) samples of patients diagnosed with anti-NMDAR encephalitis and verified using a cell-based assay. CSF from patients with non-inflammatory neurological diseases served as the control.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
December 2024
Neurocrine Biosciences, Inc., San Diego, CA, United States.
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
December 2024
CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!