Circulating osteocyte-derived exosomes contain miRNAs which are enriched in exosomes from MLO-Y4 cells.

Biomed Rep

Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan.

Published: February 2017

Signaling molecules produced by osteocytes have been proposed to serve as soluble factors that contribute to bone remodeling, as well as to homeostasis of other organs. However, to the best of our knowledge, there are currently no studies investigating the role of osteocyte-secreted exosomes. In the present study, ablation of osteocytes in mice [osteocyte-less (OL)] was used to examine the microRNA (miRNA) levels of plasma-circulating exosomes. In order to investigate the function of osteocyte-secreted exosomes, exosomes derived from MLO-Y4 cells were extracted and their miRNA expression levels were examined using miRNA array analysis and deep sequencing. Comparison of miRNA expression levels between plasma exosomes from OL mouse plasma and MLO-Y4-derived exosomes revealed that decreases in the number of miRNAs from exosomes circulating in the OL mouse plasma may be caused by a decrease in secretion of exosomes from osteocytes. These results suggest that osteocytes secrete exosomes containing characterized miRNAs and then circulate in the blood, and may thus transfer their components, including miRNAs, to recipient cells where they function as signaling molecules in other organs and/or tissues to regulate biological responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351302PMC
http://dx.doi.org/10.3892/br.2016.824DOI Listing

Publication Analysis

Top Keywords

exosomes
11
mlo-y4 cells
8
signaling molecules
8
osteocyte-secreted exosomes
8
mirna expression
8
expression levels
8
mouse plasma
8
circulating osteocyte-derived
4
osteocyte-derived exosomes
4
mirnas
4

Similar Publications

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!