MicroRNAs (miRs) have emerged as key epigenetic regulators involved in cancer progression. miR-320a has been demonstrated to be a novel tumor suppressive microRNA in several types of cancers. In the present study, the role of miR-320a in human hepatocellular carcinoma (HCC) was investigated. The expression levels of miR-320a and messenger RNA were determined by reverse transcription-quantitative polymerase chain reaction, while cell cycle and cell apoptosis were analyzed by flow cytometry. The cell proliferative ability was determined by Cell Counting Kit-8 assay and colony formation assay. The downstream target of miR-320a was confirmed by luciferase reporter assay, while the protein levels were measured by western blotting. The results revealed that miR-320a was inversely associated with HCC proliferation in HCC cell lines. Functional studies demonstrated that miR-320a significantly decreased the capability of cell proliferation and induced G/G growth arrest . In addition, β-catenin was identified as one of the direct targets of miR-320a, downregulating the expression level of β-catenin, c-myc, cyclin D1 and dickkopf-1. In conclusion, miR-320a may act as a tumor-suppressive microRNA through targeting β-catenin in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351300PMC
http://dx.doi.org/10.3892/ol.2016.5479DOI Listing

Publication Analysis

Top Keywords

cell proliferation
8
mir-320a
8
cell
7
microrna-320a downregulation
4
downregulation mediates
4
mediates human
4
human liver
4
liver cancer
4
cancer cell
4
proliferation wnt/β-catenin
4

Similar Publications

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.

J Biochem

January 2025

Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.

The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells.

View Article and Find Full Text PDF

In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!