Impaired intracortical inhibition demonstrated in vivo in people with Dravet syndrome.

Neurology

From the Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre (W.M.S., J.W.S., S.M.S.), and Sobell Department of Motor Neuroscience and Movement Disorders (J.C.R.), UCL Institute of Neurology; Epilepsy Society (W.M.S., J.W.S., S.M.S.), Chalfont St Peter, UK; and Stichting Epilepsie Instellingen Nederland (SEIN) (J.W.S.), Heemstede, the Netherlands.

Published: April 2017

Objective: Dravet syndrome is a rare neurodevelopmental disorder characterized by seizures and other neurologic problems. mutations account for ∼80% of cases. Animal studies have implicated mutation-related dysregulated cortical inhibitory networks in its pathophysiology. We investigated such networks in people with the condition.

Methods: Transcranial magnetic stimulation using single and paired pulse paradigms was applied to people with Dravet syndrome and to 2 control groups to study motor cortex excitability.

Results: Short interval intracortical inhibition (SICI), which measures GABAergic inhibitory network behavior, was undetectable in Dravet syndrome, but detectable in all controls. Other paradigms, including those testing excitatory networks, showed no difference between Dravet and control groups.

Conclusions: There were marked differences in inhibitory networks, detected using SICI paradigms, while other inhibitory and excitatory paradigms yielded normal results. These human data showing reduced GABAergic inhibition in vivo in people with Dravet syndrome support established animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405762PMC
http://dx.doi.org/10.1212/WNL.0000000000003868DOI Listing

Publication Analysis

Top Keywords

dravet syndrome
20
people dravet
12
intracortical inhibition
8
vivo people
8
inhibitory networks
8
dravet
6
syndrome
5
impaired intracortical
4
inhibition demonstrated
4
demonstrated vivo
4

Similar Publications

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

The patient was a 21-year-old female. She had frequently had status seizures when she had a fever or while taking a bath since she was 6 months old. At 1 year and 8 months old, she developed epilepsy.

View Article and Find Full Text PDF

Cardiac Implications in Dravet Syndrome: Can Electrocardiogram and Echocardiography Detect Hidden Risks?

Pediatr Neurol

January 2025

Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).

View Article and Find Full Text PDF

Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, specific electroencephalogram (EEG) patterns, and significant cognitive and behavioral impairments. To date, eight anti-seizure medications (ASMs) have been specifically approved by the U.S.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!