Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Study Objectives: Nocturnal oximetry has become known as a simple, readily available, and potentially useful diagnostic tool of childhood obstructive sleep apnea (OSA). However, at-home respiratory polygraphy (HRP) remains the preferred alternative to polysomnography (PSG) in unattended settings. The aim of this study was twofold: (1) to design and assess a novel methodology for pediatric OSA screening based on automated analysis of at-home oxyhemoglobin saturation (SpO), and (2) to compare its diagnostic performance with HRP.
Methods: SpO recordings were parameterized by means of time, frequency, and conventional oximetric measures. Logistic regression models were optimized using genetic algorithms (GAs) for three cutoffs for OSA: 1, 3, and 5 events/h. The diagnostic performance of logistic regression models, manual obstructive apnea-hypopnea index (OAHI) from HRP, and the conventional oxygen desaturation index ≥ 3% (ODI3) were assessed.
Results: For a cutoff of 1 event/h, the optimal logistic regression model significantly outperformed both conventional HRP-derived ODI3 and OAHI: 85.5% accuracy (HRP 74.6%; ODI3 65.9%) and 0.97 area under the receiver operating characteristics curve (AUC) (HRP 0.78; ODI3 0.75) were reached. For a cutoff of 3 events/h, the logistic regression model achieved 83.4% accuracy (HRP 85.0%; ODI3 74.5%) and 0.96 AUC (HRP 0.93; ODI3 0.85) whereas using a cutoff of 5 events/h, oximetry reached 82.8% accuracy (HRP 85.1%; ODI3 76.7) and 0.97 AUC (HRP 0.95; ODI3 0.84).
Conclusions: Automated analysis of at-home SpO recordings provide accurate detection of children with high pretest probability of OSA. Thus, unsupervised nocturnal oximetry may enable a simple and effective alternative to HRP and PSG in unattended settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406958 | PMC |
http://dx.doi.org/10.5664/jcsm.6586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!