Background: There is an increasing demand on cholesterol oxidase for its various industrial and clinical applications. The current research was focused on extracellular cholesterol oxidase production under submerged fermentation by a local isolate previously identified as Streptomyces aegyptia NEAE 102. The crude enzyme extract was purified by two purification steps, protein precipitation using ammonium sulfate followed by ion exchange chromatography using DEAE Sepharose CL-6B. The kinetic parameters of purified cholesterol oxidase from Streptomyces aegyptia NEAE 102 were studied.
Results: The best conditions for maximum cholesterol oxidase activity were found to be 105 min of incubation time, an initial pH of 7 and temperature of 37 °C. The optimum substrate concentration was found to be 0.4 mM. The higher thermal stability behavior of cholesterol oxidase was at 50 °C. Around 63.86% of the initial activity was retained by the enzyme after 20 min of incubation at 50 °C. The apparent molecular weight of the purified enzyme as sized by sodium dodecyl sulphate-polyacryalamide gel electrophoresis was approximately 46 KDa. On DEAE Sepharose CL-6B column cholesterol oxidase was purified to homogeneity with final specific activity of 16.08 U/mg protein and 3.14-fold enhancement. The amino acid analysis of the purified enzyme produced by Streptomyces aegyptia NEAE 102 illustrated that, cholesterol oxidase is composed of 361 residues with glutamic acid as the most represented amino acid with concentration of 11.49 μg/mL.
Conclusions: Taking into account the extracellular production, wide pH tolerance, thermal stability and shelf life, cholesterol oxidase produced by Streptomyces aegyptia NEAE 102 suggested that the enzyme could be industrially useful.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372259 | PMC |
http://dx.doi.org/10.1186/s12866-017-0988-4 | DOI Listing |
Hepatol Commun
December 2024
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Background: Sphingosine-1 phosphate (S1P) is a bioactive lipid molecule that modulates inflammation and hepatic lipid metabolism in MASLD, which affects 1 in 3 people and increases the risk of liver fibrosis and hepatic cancer. S1P can be generated by 2 isoforms of sphingosine kinase (SphK). SphK1 is well-studied in metabolic diseases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan.
Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, P. R. China.
The immunosuppressive residual tumor microenvironment (IRTM) is a key factor in the high recurrence and metastasis rates of hepatocellular carcinoma (HCC) after microwave ablation (MWA). Cholesterol-rich tumor fragments significantly contribute to IRTM deterioration. This study developed a cholesterol-targeted catalytic hydrogel, DA-COD-OD-HCS, to enhance the synergy between MWA and immune checkpoint inhibitors (ICIs) for HCC treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China.
The dysregulated cholesterol metabolism in breast cancer cells drives malignancy, invasion, and metastasis, emphasizing the significance of reducing abnormal cholesterol accumulation for effective cancer treatment and metastasis inhibition. Despite its promise, cholesterol oxidase (ChOx) encounters challenge due to limited catalytic efficiency and susceptibility to harsh conditions. To overcome these hurdles, biocompatible nanoplatforms (Cu-HPB/C) tailored for efficient cholesterol depletion are introduced.
View Article and Find Full Text PDFFree Radic Res
October 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!