GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

J Comput Biol

1 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China .

Published: October 2017

Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2016.0216DOI Listing

Publication Analysis

Top Keywords

web server
8
annotation eukaryotic
8
eukaryotic genome
8
gffview web
4
server parsing
4
parsing visualizing
4
visualizing annotation
4
genome wide
4
wide application
4
application rna
4

Similar Publications

pLM4CPPs: Protein Language Model-Based Predictor for Cell Penetrating Peptides.

J Chem Inf Model

January 2025

Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.

Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification.

View Article and Find Full Text PDF

The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.

View Article and Find Full Text PDF

Objective: Cancer remains a leading cause of morbidity and mortality globally, with India experiencing a significant cancer burden. Effective population-based cancer screening is crucial for early detection and reduction of cancer-related deaths. This study aims to develop a mobile application-based Cancer Screening and Surveillance System (CSMS) to enhance the efficiency and effectiveness of population-based cancer screening by community health workers (CHWs).

View Article and Find Full Text PDF

Structure-based self-supervised learning enables ultrafast protein stability prediction upon mutation.

Innovation (Camb)

January 2025

AIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences.

View Article and Find Full Text PDF

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!