The mammalian olfactory system provides great inspiration for the design of intelligent sensors. To this end, we have developed a bioinspired phage nanostructure-based color sensor array and a smartphone-based sensing network system. Using a M13 bacteriophage (phage) as a basic building block, we created structural color matrices that are composed of liquid-crystalline bundled nanofibers from self-assembled phages. The phages were engineered to express cross-responsive receptors on their major coat protein (pVIII), leading to rapid, detectable color changes upon exposure to various target chemicals, resulting in chemical- and concentration-dependent color fingerprints. Using these sensors, we have successfully detected 5-90% relative humidity with 0.2% sensitivity. In addition, after modification with aromatic receptors, we were able to distinguish between various structurally similar toxic chemicals including benzene, toluene, xylene, and aniline. Furthermore, we have developed a method of interpreting and disseminating results from these sensors using smartphones to establish a wireless system. Our phage-based sensor system has the potential to be very useful in improving national security and monitoring the environment and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b07942 | DOI Listing |
Nat Commun
December 2024
pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan.
Irrespective of the specific see-through device, obtaining optimal transparency remains the primary goal. In this work, we introduce a general strategy to enhance the transparency of various see-through devices. We achieve this by structuring the colored functional materials into imperceptible three-dimensional mesh lines, addressing a common challenge in multi-layer structures where each layer causes a reduction in transparency due to their color or opacity.
View Article and Find Full Text PDFthe axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Institute of Biophysics, National Research Council , Genova, Italy.
The physiological, functional, and structural properties of proteins and their pathogenic variants can be summarized using many tools. The information relating to a single protein is often spread among different sources requiring different programs for access. It is not always easy to select, simultaneously visualize, and compare specific properties of different proteins.
View Article and Find Full Text PDFAdv Mater
December 2024
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.
View Article and Find Full Text PDFSmall
December 2024
Département de chimie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!