Rapid eye movement sleep deprivation-associated elevated noradrenaline increases and decreases neuronal and glial Na-K ATPase activity, respectively. In this study, using C6 cell-line as a model, we investigated the possible intracellular molecular mechanism of noradrenaline-induced decreased glial Na-K ATPase activity. The cells were treated with noradrenaline in the presence or absence of adrenoceptor antagonists, modulators of extra- and intracellular Ca and modulators of intracellular signalling pathways. We observed that noradrenaline acting on β-adrenoceptor decreased Na-K ATPase activity and mRNA expression of the catalytic α2-Na-K ATPase subunit in the C6 cells. Further, cAMP and protein kinase-A mediated release of intracellular Ca played a critical role in such decreased α2-Na-K ATPase expression. In contrast, noradrenaline acting on β-adrenoceptor up-regulated the expression of regulatory β2-Na-K ATPase subunit, which although was cAMP and Ca dependent, was independent of protein kinase-A and protein kinase-C. Combining these with previous findings (including ours) we have proposed a working model for noradrenaline-induced suppression of glial Na-K ATPase activity and alteration in its subunit expression. The findings help understanding noradrenaline-associated maintenance of brain excitability during health and altered states, particularly in relation to rapid eye movement sleep and its deprivation when the noradrenaline level is naturally altered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-017-0488-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!