The roles of histone tails as substrates for reversible chemical modifications and dynamic cognate surfaces for the binding of regulatory proteins are well established. Despite these crucial roles, experimentally derived knowledge of the structure and possible binding sites of histone tails in chromatin is limited. In this study, we utilized molecular dynamics of isolated histone H3 N-terminal peptides to investigate its structure as a function of post-translational modifications that are known to be associated with defined chromatin states. We observed a structural preference for α-helices in isoforms associated with an inactive chromatin state, while isoforms associated with active chromatin states lacked α-helical content. The physicochemical effect of the post-translational modifications was highlighted by the interaction of arginine side-chains with the phosphorylated serine residues in the inactive isoform. We also showed that the isoforms exhibit different tail lengths, and, using molecular docking of the first 15 N-terminal residues of an H3 isoform, identified potential binding sites between the superhelical gyres on the octamer surface, close to the site of DNA entry/exit in the nucleosome. We discuss the possible functional role of the binding of the H3 tail within the nucleosome on both nucleosome and chromatin structure and stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391383PMC
http://dx.doi.org/10.1007/s00894-017-3308-xDOI Listing

Publication Analysis

Top Keywords

histone tails
8
binding sites
8
post-translational modifications
8
chromatin states
8
isoforms associated
8
binding
5
chromatin
5
epigenetic modifications
4
modifications secondary
4
secondary structures
4

Similar Publications

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.

View Article and Find Full Text PDF

Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases.

Biology (Basel)

January 2025

Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy.

Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood.

View Article and Find Full Text PDF

Background: Cellular histones are DNA-binding nuclear proteins involved in chromatin remodelling and regulation of gene expression. However, extracellular histones act as damage-associated molecular patterns (DAMPs) and contribute to multiorgan damage in conditions with sepsis and diseases with acute critical illnesses. Alongside, histones are associated with thrombocytopenia due to dysfunctional platelets that regulate hemostasis and thrombosis.

View Article and Find Full Text PDF

The ribotoxic stress response is a pathway that gets activated when ribosomes get impaired, leading to disruptions in protein synthesis, increased inflammatory signaling, and cell death if left unresolved. Taraxacum can induce apoptosis-associated ribosomal RNA (rRNA) cleavage, however, the exact working mechanism of Taraxacum-induced rRNA cleavage remains unclear. In this study, we used the RNA integrity (RIN) value and 28S/18S ratio to confirm the integrity of experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!