Identifying and revealing the geochemical behaviour of Tl during mine waste weathering are very important to assess the potential environmental impact of Thallium (Tl) from open mine-waste piles. Herein, two methods including the modified BCR sequential extraction and the long-term humidity cell tests (HCT) were employed to understand the Tl chemical fractions and to stimulate intense chemical weathering process, respectively. The results from BCR sequential extraction showed that the Tl concentration in the studied sample was 18.78 mg/kg, containing 1.878 mg/kg oxidisable, 0.282 mg/kg acid exchangeable and 1.596 mg/kg reducible Tl. The acid exchangeable fraction contributed to a particular potential risk to the aquatic marine life in the early stages and the Fe/Mn oxidisable fraction posed a potential risk being dissolved into solution at low pH (i.e. acidic conditions). The variations of Tl concentration in leachates were classified as two period as the pH values decrease. In the first period, the Tl concentrations decreased positively with pH value with poor correlation between pH value and SO concentration in leachates. Drastic release of Tl was observed in the early period once the material was exposed to air and water, being ascribe to the acid exchangeable fraction bound to carbonate as dissolved by acid. During the second period, three increased peaks of Tl concentration (11.02, 16.03, 43.15 μg/L) and four increased peaks of SO concentration (315, 390, 899.61 and 2670 mg/L) were observed. A good correlation (R = 0.8384) between the concentrations of Tl and SO was observed, indicating the Tl was mainly released from the oxidation of sulphide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-8809-8 | DOI Listing |
J Phys Chem A
January 2025
Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Paraná, Brazil.
In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Tau is a microtubule (MT)-associated protein that binds to and stabilizes the MTs of neurons. Due to its intrinsically disordered nature, it undergoes several post-translational modifications (PTMs) that are intricately linked to both the physiological and pathophysiological roles of Tau. Prior research has shown phosphorylation and O-GlcNAcylation to have contrasting effects on Tau aggregation; however, the precise molecular mechanisms and potential synergistic effects of these modifications remain elusive.
View Article and Find Full Text PDFSci Rep
January 2025
National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!