B(CN), C(CN), and N(CN) are highly versatile polycyano anions that produce various functional compounds. To investigate the coordination abilities of these anions in the solid state quantitatively, we synthesized mixed-ligand Cu(ii) complexes: [Cu(R-acac)(tmen)X] (X = polycyano anion, R-acac = acetylacetonate or butyl-acetylacetonate, tmen = tetramethylethylenediamine). The coordination abilities of the anions, increasing in the order B(CN) < C(CN) < N(CN), result in a decrease in the d-d transition energies of the complexes and the shortening of the axial coordination distance. The influence of crystal packing on the coordination geometries and d-d transition energies of the complexes was also demonstrated. The donor numbers of the anions were determined from the d-d transition energies in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt00675fDOI Listing

Publication Analysis

Top Keywords

d-d transition
16
transition energies
16
coordination abilities
12
bcn ccn
12
ccn ncn
12
polycyano anions
8
anions solid
8
solid state
8
coordination geometries
8
geometries d-d
8

Similar Publications

This work investigates the dynamic behavior of droplets on superhydrophobic cylindrical surfaces with a convex ridge through experimental analysis, focusing on the effects of varying the diameter ratio ( = ) and the ridge width ratio (δ = ). Impact morphology diagrams are established to reveal the morphology transition of the droplet as a function of and δ. The splash threshold is obtained, and the energy loss during the collision process is analyzed by examining the recovery coefficient and the splitting angle, with the splitting threshold found to be dependent on δ.

View Article and Find Full Text PDF

A novel isopthalamide based receptor HL2 featuring two p-benzoic acid units has been synthesised and its anion binding properties analysed by H-NMR spectroscopy in DMSO-d/0.5 % HO. As expected, in the presence of tetrabutylammonium (TBA) fluoride the deprotonation of the carboxylic acid moieties was observed.

View Article and Find Full Text PDF

Rapid and in-depth reconstruction of fluorine-doped bimetallic oxide in electrocatalytic oxygen evolution processes.

J Colloid Interface Sci

January 2025

Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China; School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China. Electronic address:

Most transition metal-based electrocatalysts, when used for the oxygen evolution reaction (OER), undergo significant restructuring under alkaline conditions, forming localized oxides/hydroxides (MOOH), which act as the real active centers, activating adjacent metal sites and creating new active sites that enhance electrocatalytic behavior. Nevertheless, inducing rapid and in-depth self-reconstruction of catalyst surfaces remains a huge challenge. Herein, this work achieves rapid and in-depth self-reconstruction by doping fluorine into the lattice of transition metal oxides (MO).

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

A HTO-Type Nonlinear Optical Fluorophosphate with Ultrawide Bandgap.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!