Straightforward and effective methods are required for the bioconjugation of proteins to surfaces and particles. Previously we demonstrated that the fusion of a single domain antibody with the biotin binding molecule rhizavidin provided a facile method to coat biotin-modified surfaces with a highly active and oriented antibody. Here, we constructed similar single domain antibody-rhizavidin fusions as well as unfused rhizavidin with a His-tag. The unfused rhizavidin produced efficiently and its utility for assay development was demonstrated in surface plasmon resonance experiments. The single domain antibody-rhizavidin fusions were utilized to coat quantum dots that had been prepared with surface biotins. Preparation of antibody coated quantum dots by this means was found to be both easy and effective. The prepared single domain antibody-quantum dot reagent was characterized by surface plasmon resonance and applied to toxin detection in a fluoroimmunoassay sensing format.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5040863PMC
http://dx.doi.org/10.1016/j.btre.2016.03.001DOI Listing

Publication Analysis

Top Keywords

single domain
20
quantum dots
12
domain antibody-rhizavidin
12
antibody-rhizavidin fusions
12
unfused rhizavidin
8
surface plasmon
8
plasmon resonance
8
single
5
domain
5
conjugation biotin-coated
4

Similar Publications

Secure IoT data dissemination with blockchain and transfer learning techniques.

Sci Rep

January 2025

Torrens University Australia, Fortitude Valley, QLD 4006, Leaders Institute, 76 Park Road, Woolloongabba, QLD 4102, Brisbane, Queensland, Australia.

Article Synopsis
  • Streaming IoT data is crucial for building trust in sustainable IoT solutions, but current systems often face issues with reliability, security, and transparency due to their centralized structures.
  • The research introduces TraVel, a framework that uses blockchain and transfer learning to improve the security of IoT data management, utilizing decentralized IPFS for data storage and a private Ethereum blockchain for enhanced data integrity.
  • TraVel implements self-executing smart contracts for access control and uses an adversarial domain adaptation model to filter out malicious data, ensuring only validated data is stored, with successful performance shown in simulations.
View Article and Find Full Text PDF

Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.

View Article and Find Full Text PDF

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.

View Article and Find Full Text PDF

Purpose: 1) To identify outcome measures used in support programs designed to enhance functioning in autistic children and adolescents, and 2) To map the content of these measures to the domains of the International Classification of Functioning, Disability and Health (ICF).

Methods: A systematic review was conducted. Searches were performed in Medline/PubMed, EMBASE and Virtual Health Library databases, with no restrictions imposed regarding language or year of publication.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!