Salvianolic acid B (Sal B) is a water-soluble phenolic compound derived from . Recent studies show Sal B has a clear function of anti-cerebral ischemia injury, which is closely related to antioxidation, free radical scavenging, neuroprotection and the blood brain barrier. The aim of the present study was to verify whether Sal B prevents steroid-induced osteonecrosis of the femoral head and to investigate its underlying pharmacological mechanisms. Steroid-induced osteonecrosis rat models were established to evaluate the effects of Sal B on osteonecrotic changes and repair processes. The use of Sal B improved steroid-induced histopathological scores and inhibited osteoclast differentiation in rats. Notably, Sal B induced bone marrow-derived mesenchymal stem cells into osteogenesis. Moreover, Sal B treatment suppressed peroxisome proliferator-activated receptor (PPAR)γ and AP2 protein expression levels and increased runt-related transcription factor 2 and Collagen I protein expression levels in steroid-induced rats. osteocalcin and alkaline phosphatase content in steroid-induced rats was enhanced by treatment with Sal B. These results suggest that Sal B prevents steroid-induced osteonecrosis of the femoral head via PPARγ expression in rats. The present pilot study provides a brief insight into the effect of Sal B on steroid-induced osteonecrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348693 | PMC |
http://dx.doi.org/10.3892/etm.2016.4008 | DOI Listing |
Bone Res
January 2025
The Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.
View Article and Find Full Text PDFJ Cell Biochem
January 2025
Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Orthopedics, Huai'an Hospital of Huai'an City Huai'an 223200, Jiangsu, China.
Background: Steroid-induced osteonecrosis of the femoral head (SONFH) is a pathological condition primarily driven by an impaired balance in the differentiation of bone marrow mesenchymal stem cells (BMSCs) into adipogenic and osteogenic lineages. This study aimed to explore the role of miR-129-5p as a regulator of SONFH progression and associated mechanisms.
Methods: BMSCs were harvested from a rat SONFH model.
Nan Fang Yi Ke Da Xue Xue Bao
January 2025
Hunan University of Chinese Medicine, Changsha 410208, China.
Objectives: To explore the mechanism by which histone deacetylase 1 (HDAC1) regulates steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells.
Methods: MLY-O4 cells were treated with 400 nmol/L trichostatin A (TSA) or 1 mmol/L dexamethasone for 24 h or transfected with a HDAC1-overexpressing vector prior to TSA or dexamethasone treatment. The changes in the expressions of HDAC1, SP1, cleaved caspase-3 and Bax, SP1 acetylation level, cell proliferation, and cell apoptosis were examined.
J Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!