Invasive species have become widespread in aquatic environments throughout the world, yet there are few studies that have examined genomic variation of multiple introduced species in newly colonized environments. In this study, we contrast genomic variation in two salmonid species (anadromous Chinook Salmon, , 11,579 SNPs and resident Brook Charr , 13,522 SNPs) with differing invasion success after introduction to new environments in South America relative to populations from their native range in North America. Estimates of genetic diversity were not significantly different between introduced and source populations for either species, indicative of propagule pressure that has been shown to maintain diversity in founding populations relative to their native range. Introduced populations also demonstrated higher connectivity and gene flow than those in their native range. Evidence for candidate loci under divergent selection was observed, but was limited to specific introduced populations and was not widely evident. Patterns of genomic variation were consistent with general dispersal potential of each species and therefore also the notion that life history variation may contribute to both invasion success and subsequent genetic structure of these two salmonids in Patagonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367078PMC
http://dx.doi.org/10.1111/eva.12464DOI Listing

Publication Analysis

Top Keywords

genomic variation
12
native range
12
salmonid species
8
south america
8
invasion success
8
introduced populations
8
species
6
introduced
5
populations
5
genomic
4

Similar Publications

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Optimized methods for scRNA-seq and snRNA-seq of skeletal muscle stored in nucleic acid stabilizing preservative.

Commun Biol

January 2025

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.

View Article and Find Full Text PDF

Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma.

View Article and Find Full Text PDF

Hotspots of genetic change in Yersinia pestis.

Nat Commun

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!