A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. | LitMetric

CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment.

J Exp Med

Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138

Published: April 2017

The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine and its receptor, , are expressed by zebrafish endothelial cells, and we identify signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC-endothelial cell "cuddling," HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced signaling was associated with an increase in the volume of the CHT and induction of expression. Finally, using parabiotic zebrafish, we show that acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379982PMC
http://dx.doi.org/10.1084/jem.20161616DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
12
stem progenitor
8
progenitor cell
8
hspc engraftment
8
hspc
7
hematopoietic
5
cxcr1 remodels
4
remodels vascular
4
vascular niche
4
niche promote
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!