Sphingosine kinase 1 (SphK1) promotes cell proliferation and survival, and its abundance is often increased in tumors. SphK1 produces the signaling lipid sphingosine 1-phosphate (S1P), which activates signaling cascades downstream five G protein-coupled receptors (S1P) to modulate vascular and immune system function and promote proliferation. We identified a new function of the SphK1-S1P pathway specifically in the control of mitosis. SphK1 depletion in HeLa cells caused prometaphase arrest, whereas its overexpression or activation accelerated mitosis. Increasing the abundance of S1P promoted mitotic progression, overrode the spindle assembly checkpoint (SAC), and led to chromosome segregation defects. S1P was secreted through the transporter SPNS2 and stimulated mitosis by binding to and activating S1P on the extracellular side, which then activated the intracellular phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Knockdown of S1P prevented the S1P-induced spindle defect phenotype. RNA interference assays revealed that the mitotic kinase Polo-like kinase 1 (PLK1) was an important effector of S1P-S1P signaling-induced mitosis in HeLa cells. Our findings identify an extracellular signal and the downstream pathway that promotes mitotic progression and may indicate potential therapeutic targets to inhibit the proliferation of cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aah4007DOI Listing

Publication Analysis

Top Keywords

mitotic progression
12
sphingosine 1-phosphate
8
chromosome segregation
8
hela cells
8
s1p
7
1-phosphate signaling
4
signaling receptor
4
receptor s1p
4
s1p promotes
4
promotes chromosome
4

Similar Publications

Aim: To investigate additional factors contributing to the pathophysiology of chemotherapy-induced oral mucositis and periodontitis beyond the systemic immune suppression caused by the chemotherapeutic agent 5-Fluorouracil (5-FU).

Methods: 5-Fluorouracil was topically delivered to the non-keratinized, rapidly proliferating junctional epithelium (JE) surrounding the dentition, and acts as an immunologic and functional barrier to bacterial ingression. Various techniques, including EdU incorporation, quantitative immunohistochemistry (qIHC), histology, enzymatic activity assays, and micro-computed tomographic (μCT) imaging, were employed to analyze the JE at multiple time points following topical 5-FU treatment.

View Article and Find Full Text PDF

Deep penetrating nevi (DPNs) are characterized by activating mutations in the MAP kinase and Wnt/beta-catenin pathways that result in large melanocytes with increased nuclear atypia, cytoplasmic pigmentation, and often mitotic activity. Together with a lack of maturation, this constellation of findings creates challenges for pathologists to distinguish deep penetrating nevus (DPN) from DPN-like melanoma. To assess the utility of next generation sequencing (NGS) in resolving this diagnostic dilemma, we performed NGS studies on 35 lesions including 24 DPNs and 11 DPN-like melanomas to characterize the specific genomic differences between the two groups and elucidate the genetic events involved in malignant transformation of DPNs.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.

View Article and Find Full Text PDF

CAMSAP2 is required for bridging fiber assembly to ensure mitotic spindle assembly and chromosome segregation in human epithelial Caco-2 cells.

PLoS One

January 2025

Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.

In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!