Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of Tc-labeled H1299.2 for tumor imaging in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2017.03.029DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
cancer cells
8
edda/tricine co-ligands
8
radiolabeled peptides
8
cancer cell
8
cancer
6
imaging
5
comparative assessment
4
assessment labeled
4
labeled h12992-hynic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!