Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H consumption and retardation of radionuclide migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520028PMC
http://dx.doi.org/10.1038/ismej.2017.39DOI Listing

Publication Analysis

Top Keywords

potential microbial
8
radioactive waste
8
metabolism predicted
8
microbial metal
4
metal transformations
4
transformations associated
4
associated novel
4
novel bacteria
4
bacteria archaea
4
archaea deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!