Chronic infection by hepatitis B virus (HBV) genotype C is associated with a prolonged replicative phase and an increased risk of liver cancer, compared with genotype B infection. We previously found lower replication capacity but more efficient virion secretion by genotype C than genotype B isolates. Virion secretion requires interaction between core particles and ENVELOPE proteins. In the present study, chimeric constructs between genotype B and genotype C clones were generated to identify the structural basis for differential virion secretion. In addition to dimeric constructs, we also employed 1.1mer constructs, where the cytomegalovirus (CMV) promoter drove pregenomic RNA transcription. Through transient transfection experiments in Huh7 cells, we found that exchanging the entire gene or just its region could enhance virion secretion by genotype B clones while diminishing virion secretion by genotype C. Site-directed mutagenesis established the contribution of genotype-specific divergence at codons 108 and 115 in the region, as well as codon 126 in the region, to differential virion secretion. Surprisingly, exchanging the gene or just its region, but not the gene or 3' region, could markedly increase intracellular replicative DNA for genotype C clones but diminish that for genotype B, although the underlying mechanism remains to be clarified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408668 | PMC |
http://dx.doi.org/10.3390/v9040062 | DOI Listing |
Biotechnol J
January 2025
Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.
View Article and Find Full Text PDFViruses
January 2025
Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
Coliphage N4 is a representative species of the family of bacteriophages. Originally structurally studied in 2008, the capsid structure was solved to 14 Å to reveal an interesting arrangement of Ig-like decoration proteins across the surface of the capsid. Herein, we present a high-resolution N4 structure, reporting a 2.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA.
Productive infections of oncogenic human papillomaviruses (HPVs) are closely linked to the differentiation of host epithelial cells, a process that the virus manipulates to create conditions favorable to produce virion progeny. This viral interference involves altering the expression of numerous host genes. Among these, proprotein convertases (PCs) have emerged as potential oncogenes due to their central role in cellular functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!