Polarity establishment by Cdc42: Key roles for positive feedback and differential mobility.

Small GTPases

a Department of Pharmacology and Cancer Biology , Duke University Medical Center, Durham , NC , USA.

Published: March 2019

Cell polarity is fundamental to the function of most cells. The evolutionarily conserved molecular machinery that controls cell polarity is centered on a family of GTPases related to Cdc42. Cdc42 becomes activated and concentrated at polarity sites, but studies in yeast model systems led to controversy on the mechanisms of polarization. Here we review recent studies that have clarified how Cdc42 becomes polarized in yeast. On one hand, findings that appeared to support a key role for the actin cytoskeleton and vesicle traffic in polarity establishment now appear to reflect the action of stress response pathways induced by cytoskeletal perturbations. On the other hand, new findings strongly support hypotheses on the polarization mechanism whose origins date back to the mathematician Alan Turing. The key features of the polarity establishment mechanism in yeasts include a positive feedback pathway in which active Cdc42 recruits a Cdc42 activator to polarity sites, and differential mobility of polarity "activators" and "substrates."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380280PMC
http://dx.doi.org/10.1080/21541248.2016.1275370DOI Listing

Publication Analysis

Top Keywords

polarity establishment
12
polarity
8
positive feedback
8
differential mobility
8
cell polarity
8
polarity sites
8
hand findings
8
cdc42
6
establishment cdc42
4
cdc42 key
4

Similar Publications

Viridium: A Stable Radical and Its π-Dimerization.

J Am Chem Soc

January 2025

Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.

The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

Soil data from the Barbastro-Balaguer gypsum belt, NE Spain.

Data Brief

February 2025

Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.

The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.

View Article and Find Full Text PDF

Combined Experimental and Theoretical Approach to the Electronic and Magnetic Properties of Cu-Doped LaMnO Perovskites.

J Phys Chem C Nanomater Interfaces

January 2025

Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck,Innrain 80-82, 6020 Innsbruck, Austria.

Cu-doped LaCu Mn O perovskites have been used as a model system for a joint experimental and theoretical assessment of the influence of the Cu doping level on the structural, electronic, and magnetic properties. The different Cu-doped phases LaCuMnO (LCM37), LaCuMnO (LCM55), and LaCuMnO (LCM73) including the respective Cu- and Mn-free benchmark materials LaCuO (LC) and LaMnO (LM) have been studied by magnetization measurements and electronic paramagnetic resonance. Ferromagnetic behavior was detected for pure LM and all Cu-doped perovskites, whereas antiferromagnetic behavior was revealed for LaCuO.

View Article and Find Full Text PDF

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!