Glutamate‑mediated effects of caffeine and interferon‑γ on mercury-induced toxicity.

Int J Mol Med

Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.

Published: May 2017

The molecular mechanisms mediating mercury‑induced neurotoxicity are not yet completely understood. Thus, the aim of this study was to investigate whether the severity of MeHg‑ and HgCl2‑mediated cytotoxicity to SH‑SY5Y human dopaminergic neurons can be attenuated by regulating glutamate‑mediated signal‑transmission through caffeine and interferon‑γ (IFN‑γ). The SH‑SY5Y cells were exposed to 1, 2 and 5 µM of either MeHgCl2 or HgCl2 in the presence or absence of L‑glutamine. To examine the effect of adenosine receptor antagonist, the cells were treated with 10 and 20 µM caffeine. The total mitochondrial metabolic activity and oxidative stress intensity coefficient were determined in the 1 ng/ml IFN‑γ‑ and glutamate‑stimulated SH‑SY5Y cells. Following exposure to mercury, the concentration‑dependent decrease in mitochondrial metabolic activity inversely correlated with oxidative stress intensity. MeHg was more toxic than HgCl2. Mercury‑induced neuronal death was dependent on glutamate‑mediated excitotoxicity. Caffeine reduced the mercury‑induced oxidative stress in glutamine-containing medium. IFN‑γ treatment decreased cell viability and increased oxidative stress in glutamine‑free medium, despite caffeine supplementation. Although caffeine exerted a protective effect against MeHg-induced toxicity with glutamate transmission, under co‑stimulation with glutamine and IFN‑γ, caffeine decreased the MeHg‑induced average oxidative stress only by half. Thereby, our data indicate that the IFN‑γ stimulation of mercury‑exposed dopaminergic neurons in neuroinflammatory diseases may diminish the neuroprotective effects of caffeine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403307PMC
http://dx.doi.org/10.3892/ijmm.2017.2937DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
caffeine
8
effects caffeine
8
dopaminergic neurons
8
sh‑sy5y cells
8
mitochondrial metabolic
8
metabolic activity
8
stress intensity
8
oxidative
5
stress
5

Similar Publications

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE.

View Article and Find Full Text PDF

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!