Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368972PMC
http://dx.doi.org/10.1038/srep45370DOI Listing

Publication Analysis

Top Keywords

actuation thin-film
8
thin-film nematic
8
nematic polymer
8
polymer networks
8
studies demonstrate
8
finite element
8
nematic
5
modeling out-of-plane
4
out-of-plane actuation
4
networks chiral
4

Similar Publications

In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.

View Article and Find Full Text PDF

Transparent thin-film heaters have sparked great interest in both the scientific and industrial sectors due to their critical role in various technologies, including smart windows, displays, actuators, and sensors. In this review, we summarize the structural design, fabrication methods, properties, and materials used in thin-film heaters. We also discuss methods to improve their efficiency and recent advancements in the field, and provide insights into the market size, growth, and future outlook for thin-film heaters.

View Article and Find Full Text PDF

Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers.

Adv Mater

December 2024

Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia.

Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues.

View Article and Find Full Text PDF

The integration of textile-based sensing and actuation elements has become increasingly important across various fields, driven by the growing demand for smart textiles in healthcare, sports, and wearable electronics. This paper presents the development of a small, smart dielectric elastomer (DE)-based sensing array designed for user control input in applications such as human-machine interaction, virtual object manipulation, and robotics. DE-based sensors are ideal for textile integration due to their flexibility, lightweight nature, and ability to seamlessly conform to surfaces without compromising comfort.

View Article and Find Full Text PDF

Laterally Actuated Si-to-Si DC MEMS Switch for Power Switching Applications.

Micromachines (Basel)

October 2024

Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada.

Electrothermal actuators are highly advantageous for microelectromechanical systems (MEMS) due to their capability to generate significant force and large displacements. Despite these benefits, their application in reconfigurable conduction line switches is limited, particularly when employing commercial processes. In DC MEMS switches, electrothermal actuators require electrical insulation between the biasing voltage and the transmission line to prevent interference and maintain the integrity of the switch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!