Analysis of Meiotic Chromosome-Associated Protein Dynamics Using Conditional Expression in Budding Yeast.

Methods Mol Biol

Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA.

Published: January 2018

The visualization of meiotic chromosomes and their associated protein structures in both wild-type and mutant cells adds valuable insight into the molecular pathways that underlie reproductive cell formation. Here we describe basic methodology for visualizing meiotic chromosomes in a long-standing model organism for investigating the molecular and cell biology of meiosis, the budding yeast, S. cerevisiae. This chapter furthermore highlights a variety of conditional expression regimes that can be used to understand the dynamics and/or developmental constraints of chromosomal protein structures; such dynamic aspects of the macromolecular structures that mediate meiotic chromosome biology are typically not obvious from standard protein visualization experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6340-9_8DOI Listing

Publication Analysis

Top Keywords

conditional expression
8
budding yeast
8
meiotic chromosomes
8
protein structures
8
analysis meiotic
4
meiotic chromosome-associated
4
protein
4
chromosome-associated protein
4
protein dynamics
4
dynamics conditional
4

Similar Publications

Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates.

View Article and Find Full Text PDF

polysaccharides alleviate metabolic dysfunction-associated steatotic liver disease through enhancing hepatocyte RelA/ HNF1α signaling.

World J Gastroenterol

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.

Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.

Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.

View Article and Find Full Text PDF

Lensless imaging offers a lightweight, compact alternative to traditional lens-based systems, ideal for exploration in space-constrained environments. However, the absence of a focusing lens and limited lighting in such environments often results in low-light conditions, where the measurements suffer from complex noise interference due to insufficient capture of photons. This study presents a robust reconstruction method for high-quality imaging in low-light scenarios, employing two complementary perspectives: model-driven and data-driven.

View Article and Find Full Text PDF

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!