Metal coordination of ferrocene-histidine conjugates.

Dalton Trans

Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, M1C 1A4 Canada. and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 Canada.

Published: April 2017

AI Article Synopsis

  • The study focuses on synthesizing ferrocene-peptide conjugates to model zinc structural sites, using specific ligands that include bis(histidine) and other amino acids.
  • Spectroscopic techniques like H-NMR and IR reveal hydrogen bonding and specific helical structures in the synthetic peptides, showing unique electrochemical properties based on their composition.
  • The interaction of these conjugates with metal ions is analyzed, revealing a 1:1 binding ratio, shifts in electrochemical potentials with varying metal ions, and suggesting a coordination number of four for certain peptides in the presence of zinc.

Article Abstract

This study presents a few bis(histidine) ligands working to build a small peptidic model system of zinc structural sites. Ferrocene-peptide conjugates Fc[CO-His(Trt)-His(Trt)-OMe] (3), Fc[CO-His(Trt)-Asp(OMe)-OMe] (4), and Fc[CO-His(Trt)-Glu(OMe)-OMe] (5) were synthesized and characterized spectroscopically. H-NMR and IR spectroscopic studies reveal hydrogen bonding interactions and while more detailed circular dichroism studies show a 1,2'-P helical "Herrick conformation" for Fc-conjugates 4 and 5, we discovered M-helical chirality in Fc-peptide 3. The half-wave potentials (E) of ferrocene-peptides follow the sequence 3 < 5 < 4 which is rationalized by the capability of the peptide side chains to stabilize the oxidized ferrocene-peptide form. The diffusion coefficient (D) and electron transfer rate constant (k) values for all Fc-conjugates were determined by their resultant cyclic voltammetry data. The interactions for all Fc-conjugates were probed with metal ions Zn, Cd, Ni, Cu, Mn, and Mg which were detected to interact at 1 : 1 ratio between the ligand and metal ion verified by H-NMR and UV titration studies, electrochemical investigations, and ESI-MS experiments. Electrochemical studies for all Fc-conjugates exhibit anodic potential shifts upon the addition of metal ions, which follow the order Cu > Zn > Ni > Cd > Mn > Mg. NMR spectroscopic experiments show that the two nitrogen atoms present on each imidazole ring of His residues are the site of metal coordination. There is a strong indication that peptide conjugates 4 and 5 in the presence of Zn enforce a coordination number of four as the CD spectra of Fc-conjugates 4 and 5 exhibited a red shift which corresponds to the third and fourth coordination sites occupied by neutral carbonyl oxygen donor atoms, in addition, carbonyl amide appears downward shifted in wavenumber upon metal addition.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt00456gDOI Listing

Publication Analysis

Top Keywords

metal coordination
8
metal ions
8
metal
6
fc-conjugates
5
coordination ferrocene-histidine
4
ferrocene-histidine conjugates
4
conjugates study
4
study presents
4
presents bishistidine
4
bishistidine ligands
4

Similar Publications

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Density functional theory (DFT) calculations indicate that [Co(HO)] reacts with two HO molecules to form [(HO)Co(OOH)(HO)] reactant complexes, which decompose through three distinct pathways depending on the relative orientation between the coordinated OOH and HO ligands. The reactive intermediates produced via these activation pathways include hydroperoxyl (OOH)/superoxide (O) radicals, singlet oxygen (O), and Co(III) species [(HO)Co(O)], [(HO)Co(OH)], and [(HO)Co(OH)]. The Co(III) species display from moderate to strong oxidizing abilities that have long been overlooked.

View Article and Find Full Text PDF

Single-phase dye-embedded triple-emitting EY&BPEA@Zr-MOFs for selective detection of inorganic ions in environmental water.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China. Electronic address:

The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence.

View Article and Find Full Text PDF

Electron transfer enhanced flower-like NiP-MoP heterostructure synergistically accelerates fast HER kinetics for large-current overall water splitting.

J Colloid Interface Sci

December 2024

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:

Article Synopsis
  • Researchers developed a new metal-phosphorus heterostructure (NiP-MoP@NF) that enhances hydrogen evolution reactions (HER) for efficient water electrolysis.
  • This structure combines nickel and molybdenum phosphides on nickel foam using a controlled strategy that optimizes electronic properties and increases active sites.
  • The resulting electrocatalyst shows impressive performance and stability, outperforming traditional options like Pt/C, suggesting high potential for industrial water electrolysis applications.
View Article and Find Full Text PDF

In-situ Growth of Metallocluster inside Heterometal-organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction.

Angew Chem Int Ed Engl

December 2024

Northeast Normal University, Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Institute of Functional Material Chemistry, Local United Engineering Lab for Power Battery, CHINA.

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metalloclusters-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metalloclusters-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2- clusters was obtained by one-pot method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!