In a series of experiments, seeds from a temperate seagrass species, collected in Port Phillip Bay, Victoria, Australia were exposed to a range of salinities (20 PSU pulse/no pulse, 25 PSU, 30 PSU, 35 PSU), temperatures (13 °C, 17 °C, 22 °C), burial depths (0 cm, 1 cm, 2 cm) and site specific sediment characteristics (fine, medium, coarse) to quantify their impacts on germination rate and maximum overall germination. In southern Australia the seagrass is a common subtidal species; however, little is known about the factors that affect seed germination which is a potential limiting factor in meadow resilience to natural and anthropogenic disturbances. Overall seed germination was low (<20%) with germination decreasing to <10% when seeds were placed in the sediment. When germination of seeds was observed, it was enhanced (greater overall germination and shorter time to germination) when seeds were exposed to a 20 PSU pulse for 24 h, maintained at salinity of 25 PSU, temperatures <13 °C, in sediments with fine or medium grain sand and buried at a depth of <1 cm. These results indicate that germination of seeds under conditions may be seasonally limited by temperatures in southern Australia. Seed germination may be further restricted by salinity as freshwater pulses reaching 20 PSU are typically only observed in Port Phillip Bay following large scale rainfall events. As a result, these populations may be particularly susceptible to disturbance with only a seasonally limited capacity for recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366064 | PMC |
http://dx.doi.org/10.7717/peerj.3114 | DOI Listing |
Environ Res
January 2025
Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, P. R. China. Electronic address:
The use of purified hydrocolloids extracted from waste-activated sludge has significant potential for preventing seed deterioration caused by aging. In this study, we compared the advantages and disadvantages of 3 types of purified hydrocolloid seed coatings from different waste sludges and one commercial seed coating at different spraying times (2, 4, 6, and 8). Compared with coated maize seeds, uncoated maize seeds underwent significant functional changes during the aging process according to the infrared spectroscopy results.
View Article and Find Full Text PDFGenomics
January 2025
Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China. Electronic address:
Sinojackia sarcocarpa, an endangered ornamental plant endemic to China, faces germination challenges that contribute to its endangered status. The mechanisms of its seed dormancy are not well understood. This study used morphological, physiological, transcriptomic, and gene function analyses to investigate these mechanisms.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, San Juan, San Juan 5400, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina. Electronic address:
Seeds of four native species of trees and shrubs (Larrea cuneifolia, Bulnesia retama, Plectrocarpa tetracantha and Prosopis flexuosa) were exposed to soil contaminated with As, Cu, Cd, and Zn from an abandoned gold mine to identify adaptation strategies. Several physiological, morpho-anatomical, and biochemical parameters were determined. The seed germination of L.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK.
Seed germination is a crucial stage in plant development, intricately regulated by various environmental stimuli. Understanding these interactions is essential for optimizing planting and seedling management but remains challenging due to the trade-off effects of environmental factors on the germination process. We proposed a new conceptual model by viewing seed germination as a dynamic process in a physiological dimension, with the influence of environmental factors and seed heterogeneity characterized by a germination speed and a dispersion coefficient.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!