Eutrophic aquatic habitats are characterized by the proliferation of vegetation leading to a large standing biomass that upon decomposition may create hypoxic (low-oxygen) conditions. This is indeed the case in nutrient impacted estuaries of Prince Edward Island, Canada, where macroalgae, from the genus form submerged ephemeral mats. Hydrological forces and gases released from photosynthesis and decomposition lead to these mats occasionally floating to the water's surface, henceforth termed floating mats. Here, we explore the hypothesis that floating mats are refugia during periods of sustained hypoxia/anoxia and examine how the invertebrate community responds to it. Floating mats were not always present, so in the first year (2013) sampling was attempted monthly and limited to when both floating and submerged mats occurred. In the subsequent year sampling was weekly, but at only one estuary due to logistical constraints from increased sampling frequency, and was not limited to when both mat types occurred. Water temperature, salinity, and pH were monitored bi-weekly with dissolved oxygen concentration measured hourly. The floating and submerged assemblages shared many of the same taxa but were statistically distinct communities; submerged mats tended to have a greater proportion of benthic animals and floating mats had more mobile invertebrates and insects. In 2014, sampling happened to occur in the weeks before the onset of anoxia, during 113 consecutive hours of sustained anoxia, and for four weeks after normoxic conditions returned. The invertebrate community on floating mats appeared to be unaffected by anoxia, indicating that these mats may be refugia during times of oxygen stress. Conversely, there was a dramatic decrease in animal abundances that remained depressed on submerged mats for two weeks. Cluster analysis revealed that the submerged mat communities from before the onset of anoxia and four weeks after anoxia were highly similar to each other, indicating recovery. When mobile animals were considered alone, there was an exponential relationship between the percentage of animals on floating mats, relative to the total number on both mat types, and hypoxia. The occupation of floating mats by invertebrates at all times, and their dominance there during hypoxia/anoxia, provides support for the hypothesis that floating mats are refugia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366062PMC
http://dx.doi.org/10.7717/peerj.3080DOI Listing

Publication Analysis

Top Keywords

floating mats
32
mats
15
floating
12
mats refugia
12
submerged mats
12
hypothesis floating
8
invertebrate community
8
floating submerged
8
mat types
8
animals floating
8

Similar Publications

The growing population of urban areas results in the need to deal with the noise pollution from the transportation system. This study presents experimental test results of static and dynamic elastic characteristics of under slab mats (USMs) according to the procedure of DIN 45673-7. Prototype USMs based on recycled elastomeric materials, i.

View Article and Find Full Text PDF

Ingestion of marine debris in juvenile sea turtles in Abu Dhabi, United Arab Emirates.

Mar Pollut Bull

December 2024

Environment Agency - Abu Dhabi, Abu Dhabi, United Arab Emirates. Electronic address:

Marine plastics and other debris constitute a major threat to many marine species. Over 12 million tons of plastics are estimated to reach the oceans annually, causing adverse effects on hundreds of marine species. The Arabian Gulf is a small, sub-tropical and semi-enclosed gulf with extreme environmental conditions with high potential to accumulate marine debris.

View Article and Find Full Text PDF

Gas-Phase Dynamics of Bundle Formation from High-Aspect-Ratio Carbon Nanotubes.

Langmuir

October 2024

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom.

In floating catalyst chemical vapor deposition (FCCVD), high-aspect-ratio carbon nanotubes (CNTs) are produced in the gas phase at high number concentrations and undergo collision and agglomeration, eventually giving rise to a macroscale aerogel, enabling functional material forms such as fibers or mats to be obtained directly from the synthesis process. The self-assembly behavior between high-aspect-ratio CNTs dictates the resulting morphology at the nanoscale and subsequently the bulk properties of the CNT product. Reorientation between CNTs after collision is a critical step that results in bundle formation and precedes aerogel formation.

View Article and Find Full Text PDF

Using rice straw-augmented ecological floating beds to enhance nitrogen removal in carbon-limited wastewater.

Bioresour Technol

June 2024

Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China. Electronic address:

Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters.

View Article and Find Full Text PDF

This research investigates the influence of water composition, the presence of seasonal algal mats, detrital inputs and the activity of microorganisms on the crystallization of aragonite in the sediments deposited in the hypersaline Laguna Honda wetland (S of Spain). The high alkaline and hypersaline waters (pH > 9.2 and C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!