Background: Latex elastics are still in common use due to their low cost and high flexibility to improve sagittal discrepancies or interdigitation of teeth. Mechanical properties of elastics are influenced by several environmental factors such as pH changes. This study evaluated similar latex elastics to define the influence of synergic effect of intermittent low pH and various baselines pH of saliva.
Materials And Methods: Four groups of latex elastics (3-M Unitek, 3/16 inch) were tested ( = 15 in each group). Two groups of elastics were immersed in two tanks of artificial saliva with different pH levels of 7 and 5, and two groups were immersed in two tanks of artificial saliva with intermittent drop of pH to 4. The force was measured when the elastics were stretched to 25 mm. These measurements were taken in 0, 4, 8, 12, 24, 36, and 48 h for each group. Repeated measures analysis of variance (RMANOVA) and Tukey's test were used to assess the findings. The level of significance was 0.05%.
Results: The interaction between pH and time analyzed with RMANOVA showed no significant differences ( > 0.05) except in 36 h ( = 0.014). The Tukey's analysis showed that each comparison between any two groups did not indicate significant differences ( > 0.05) except between Groups 1 and 3 and between Groups 2 and 3 ( < 0.05).
Conclusion: No significant correlation was seen between fluctuation of pH and force degradation in latex elastic band except in 36 h.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356392 | PMC |
http://dx.doi.org/10.4103/1735-3327.201129 | DOI Listing |
Molecules
December 2024
Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), 18052-780, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil; Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), 13083-970, Brazil; Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, (PUC-SP), 18030-070, Brazil.
Wound healing is a complex process involving a sequence of factors that can be disrupted, negatively impacting the quality of life for patients and overburdening healthcare systems. Advanced dressings obtained by electrospinning are highlighted by the optimization of this process, allowing air exchange and protection against microorganisms. Aiming to develop bioactive dressings, this study investigated the physicochemical, mechanical, microbiological, and in vitro biological properties of membranes containing 25 %, 50 %, 75 %, and 90 % copaiba oil (CO) co-electrospun with poly(L-co-D,L-lactic acid) (PLDLA) and natural rubber latex (NR).
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, Smith Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Latex-based nanocomposites containing carboxylated cellulose nanocrystals (cCNCs) were synthesized via in situ seeded semibatch emulsion polymerization. Inspired by nature's use of CNCs to enhance rigidity and mechanical strength in cellulosic materials, we explored similar principles to improve the properties of acrylate water-based coatings. The cCNCs, loaded at 0.
View Article and Find Full Text PDFPurpose: The purpose of this laboratory study was to evaluate common materials for isolation and neutralizing agents for hydrofluoric acid (HF). Additionally, surfaces of lithium disilicate ceramic were examined for precipitates after the etching and neutralizing process.
Materials And Methods: The HF permeability of the following isolation agents (n=8) was investigated by positioning them over pH indicator paper under airtight conditions and applying 9% HF: latex rubber dam; elastic plastomer rubber dam; nitrile gloves; latex gloves; liquid rubber dam; Teflon; AZ strip.
Int J Pharm
January 2025
Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!