Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronary artery disease (CAD) is a common complication of type 2 diabetes mellitus (T2D). This case-control study was done to identify metabolites with different concentrations between T2D patients with and without CAD and to characterise implicated metabolic mechanisms relating to CAD. Fasting serum samples of 57 T2D subjects, 26 with (cases) and 31 without CAD (controls), were targeted for metabolite profiling of 163 metabolites. To assess the association between metabolite levels and CAD, partial least squares (PLS) analysis and multivariate logistic regression analysis with adjustment for CAD risk factors and medications were performed. We observed a separation of cases and controls with two classes of metabolites being significantly associated with CAD, including phosphatidylcholines, and serine. Four metabolites being independent from the common CAD risk factors displaying best separation between cases and controls were further selected. Addition of the metabolite concentrations to risk factor analysis raised the area under the receiver-operating-characteristic curve from 0.72 to 0.88 ( = 0.020), providing improved sensitivity and specificity for CAD classification. Serum phospholipid and serine levels independently discriminate T2D patients with and without CAD. Oxidative stress and reduced antioxidative capacity lead to lower metabolite concentrations probably due to changes in membrane composition and accelerated phospholipid degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350534 | PMC |
http://dx.doi.org/10.1155/2017/7938216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!