A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanostructure Introduces Artifacts in Quantitative Immunofluorescence by Influencing Fluorophore Intensity. | LitMetric

Quantitative analysis of fluorescence signals from cells reacted with fluorescently labeled probes is a widely-used method for assessing cell biology. This method has become especially powerful for screening novel nanostructured materials for their influence on cell behavior. However, the effect of nanostructured surface on fluorescence intensity has largely been ignored, which likely leads to erroneous conclusions about cell behavior. This paper investigates this possibility by using fibroblasts cultured on nanoporous gold (np-Au) as a model nanostructured material system. We found that fibroblasts stained for f-actin using phalloidin conjugated with common fluorophores display different levels of fluorescence on np-Au, planar gold, and glass, suggesting different levels of f-actin composition. However, direct quantification via western blots indicates that the actin expression is the same across all conditions. We further investigated whether the fluorescence intensity depended on np-Au feature size, complementing the findings with reflection dark field measurements from different np-Au surfaces. Overall, our experimental measurements in agreement with our electrodynamic simulations suggest that nanostructured surfaces alter the fluorescence intensity of fluorophores by modulating both the excitation and light emission processes. We conclude that comparison of fluorescence on materials with different nanostructures should be done with a quantification method decoupled from the nanostructure's influence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428417PMC
http://dx.doi.org/10.1038/s41598-017-00447-7DOI Listing

Publication Analysis

Top Keywords

fluorescence intensity
12
cell behavior
8
fluorescence
6
nanostructure introduces
4
introduces artifacts
4
artifacts quantitative
4
quantitative immunofluorescence
4
immunofluorescence influencing
4
influencing fluorophore
4
intensity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!