The endogenous estrogen 17-estradiol (E2) is a key factor in promoting endothelial healing and angiogenesis. Recently, proangiogenic signals including vascular endothelial growth factor and others have been shown to converge in endothelial cell metabolism. Because inhibition of the glycolytic enzyme activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) reduces pathologic angiogenesis and estrogen receptor (ER) signaling stimulates glucose uptake and glycolysis by inducing PFKFB3 in breast cancer, we hypothesized that E2 triggers angiogenesis in endothelial cells via rapid ER signaling that requires PFKFB3 as a downstream effector. We report that treatment with the selective G protein-coupled estrogen receptor (GPER1) agonist G-1 (10 to 10 M) mimicked the chemotactic and proangiogenic effect of E2 as measured in a number of short-term angiogenesis assays in human umbilical vein endothelial cells (HUVECs); in addition, E2 treatment upregulated PFKFB3 expression in a time- and concentration-dependent manner. Such an effect peaked at 3 hours and was also induced by G-1 and abolished by pretreatment with the GPER1 antagonist G-15 or GPER1 siRNA, consistent with engagement of membrane ER. Experiments with the PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed that PFKFB3 activity was required for estrogen-mediated HUVEC migration via GPER1. In conclusion, E2-induced angiogenesis was mediated at least in part by the membrane GPER1 and required upregulation of the glycolytic activator PFKFB3 in HUVECs. These findings unravel a previously unrecognized mechanism of estrogen-dependent endocrine-metabolic crosstalk in HUVECs and may have implications in angiogenesis occurring in ischemic or hypoxic tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.116.238212 | DOI Listing |
BMC Mol Cell Biol
January 2025
Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.
Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.
View Article and Find Full Text PDFMetabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFCell Surf
June 2025
Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
Yeast cell walls contain both classically-secreted and unconventionally-secreted proteins. The latter class lacks the signal sequence for translocation into the ER, therefore these proteins are transported to the wall by uncharacterized mechanisms. One such protein is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is abundant in the cytosol, but also found in the yeast cell wall where it is enzymatically active.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
Objective: Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion.
Methods: Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!