The development of cellular immune defence in marine medaka Oryzias melastigma.

Comp Biochem Physiol C Toxicol Pharmacol

State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region. Electronic address:

Published: September 2017

Environmentally induced alterations of the immune system during sensitive developmental stages may manifest as abnormalities in immune organ configuration and/or immune cell differentiation. These not only render the early life stages more vulnerable to pathogens, but may also affect the adult immune competence. Knowledge of these sensitive periods in fish would provide an important prognostic/diagnostic tool for aquatic risk assessment of immunotoxicants. The marine medaka Oryzias melastigma is an emerging seawater fish model for immunotoxicology. Here, the presence and onset of four potentially sensitive periods during the development of innate and adaptive cellular immune defence were revealed in O. melastigma: 1.) initiation of phagocyte differentiation, 2.) migration and expansion of lymphoid progenitor cells, 3.) colonization of immune organs through lymphocyte progenitors and 4.) establishment of immune competence in the thymus. By using an established bacterial resistance assay for O. melastigma, larval immune competence (from newly hatched 1dph to 14dph) was found concomitantly increased with advanced thymus development and the presence of mature T-lymphocytes. A comparison between the marine O. melastigma and the freshwater counterpart Oryzias latipes disclosed a disparity in the T-lymphocyte maturation pattern, resulting in differences in the length of T-lymphocyte maturation. The results shed light on a potential difference between seawater and freshwater medaka in their sensitivity to environmental immunotoxicants. Further, medaka immune system development was compared and contrasted to economically important fish. The present study has provided a strong scientific basis for advanced investigation of critical windows for immune system development in fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2017.03.010DOI Listing

Publication Analysis

Top Keywords

immune system
12
immune competence
12
immune
11
cellular immune
8
immune defence
8
marine medaka
8
medaka oryzias
8
oryzias melastigma
8
sensitive periods
8
t-lymphocyte maturation
8

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!