Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease.

Brain Res Bull

Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China. Electronic address:

Published: June 2017

Long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding roles, interfere with gene expression and signaling events at various stages. Increasing evidence has suggested that lncRNAs function in the regulation of tissue homeostasis and under pathophysiologic conditions. In the nervous system, the expression of lncRNAs has been detected and characterized under normal physiologic conditions and in disease states. Some lncRNAs regulate brain development and synaptic plasticity. In Alzheimer's disease (AD), several lncRNAs have been demonstrated to regulate β-amyloid production/generation, synaptic impairment, neurotrophin depletion, inflammation, mitochondrial dysfunction, and stress responses. This review summarizes data on lncRNA expression and focuses on neural lncRNAs that may function in AD. Although our understanding of lncRNAs remains in its infancy, this review provides insight into the contribution of lncRNAs to AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2017.03.010DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
non-coding rnas
8
brain development
8
development synaptic
8
alzheimer's disease
8
lncrnas
8
lncrnas function
8
rnas brain
4
synaptic biology
4
biology alzheimer's
4

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

RNA Structure: Past, Future, and Gene Therapy Applications.

Int J Mol Sci

December 2024

ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA.

First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes.

View Article and Find Full Text PDF

Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!