Versatility of peroxisomes: An evolving concept.

Tissue Cell

Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:

Published: April 2017

Research spanning almost 50 years has highlighted unique characteristics and irreplaceable list of diverse functions performed by peroxisomes in various model systems. Peroxisomes are single membrane bound highly dynamic organelles ubiquitous to most eukaryotic cells. Proliferation by division of pre-existing organelles and the role of endoplasmic reticulum in the biogenesis of these organelles is now well established. The earliest identified conserved functions of peroxisomes are β-oxidation of fatty acids and reactive oxygen species metabolism. Several studies over the last few decades have reported the importance of this organelle and its numerous cell type, tissue and environment-dependent functions. Their role in several aspects of human health and disease is now under investigation. Studies related to peroxisome biology and functions are now also extended to diverse model systems like Drosophila melanogaster, trypanosomatids, etc. Peroxisomes also intricately collaborate and carry out these functions together with several other organelles in a cell. In this review, we aim to present an overview of our current knowledge of the repertoire of functions of peroxisomes in various model systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2017.03.002DOI Listing

Publication Analysis

Top Keywords

model systems
12
peroxisomes model
8
functions peroxisomes
8
functions
6
peroxisomes
5
versatility peroxisomes
4
peroxisomes evolving
4
evolving concept
4
concept spanning
4
spanning years
4

Similar Publications

Cost reductions are essential for accelerating clean technology deployment. Because multiple factors influence costs, traditional one-factor learning models, solely relying on cumulative installed capacity as an explanatory variable, may oversimplify cost dynamics. In this study, we disentangle learning and economies of scale effects at unit and project levels and introduce a knowledge gap concept to quantify rapid technological change's impact on costs.

View Article and Find Full Text PDF

Conventional personal health record (PHR) management systems are centralized, making them vulnerable to privacy breaches and single points of failure. Despite progress in standardizing healthcare data with the FHIR format, hospitals often lack efficient platforms for transferring PHRs, leading to redundant tests and delayed treatments. To address these challenges, we propose a decentralized PHR management system leveraging Personal Data Stores (PDS) and Decentralized Identifiers (DIDs) in line with the Web 3.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!