The aim of our study was to assess the effectiveness of transcranial direct current stimulation (tDCS) on alertness improvement in a patient in a minimally conscious state (MCS) by means of disorders of consciousness scale combined with psycho-sensory stimulation. The effects of tDCS on muscle hypertonia through the Ashworth scale were also examined. tDCS was performed through a two-channel intra-cephalic stimulator. After stimulation, the patient followed a psychosensory stimulation training. Results pointed out an increase in DOCunit score, as well as an increase in alertness maintenance and an improvement in muscle hypertonia, although a MCS state persisted.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13554794.2017.1305112DOI Listing

Publication Analysis

Top Keywords

effectiveness transcranial
8
transcranial direct
8
direct current
8
current stimulation
8
stimulation tdcs
8
psychosensory stimulation
8
minimally conscious
8
muscle hypertonia
8
stimulation
6
evaluation effectiveness
4

Similar Publications

Repetitive transcranial magnetic stimulation for fibromyalgia: are we there yet?

Pain Rep

February 2025

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.

Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.

View Article and Find Full Text PDF

The choroid, a critical vascular layer beneath the retina, is essential for maintaining retinal function and monitoring chorioretinal disorders. Existing imaging methods, such as indocyanine green angiography (ICGA) and optical coherence tomography (OCT), face significant limitations, including contrast agent requirements, restricted field of view (FOV), and high costs, limiting accessibility. To address these challenges, we developed a nonmydriatic, contrast agent-free fundus camera utilizing transcranial near-infrared (NIR) illumination.

View Article and Find Full Text PDF

Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.

View Article and Find Full Text PDF

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!