One aspect of carbon nanotube (CNT) synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT) forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304639PMC
http://dx.doi.org/10.3390/nano5031200DOI Listing

Publication Analysis

Top Keywords

dwell time
24
carbon nanotube
12
catalyst lifetime
12
growth rate
12
time carbon
12
carbon flux
12
time control
8
cnt synthesis
8
growth efficiency
8
rate catalyst
8

Similar Publications

We are developing a unique protein identification method that consists of generating peptides proteolytically from a single protein molecule (i.e., peptide fingerprints) with peptide detection and identification carried out using nanoscale electrochromatography and label-free resistive pulse sensing (RPS).

View Article and Find Full Text PDF

Impact of Chronic Intermittent Hypoxia on Cognitive Function and Hippocampal Neurons in Mice: A Study of Inflammatory and Oxidative Stress Pathways.

Nat Sci Sleep

December 2024

Clinical Department of National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.

Purpose: Chronic intermittent hypoxia (CIH) is considered one of the main pathophysiological mechanisms of obstructive sleep apnea (OSA). CIH can further lead to cognitive dysfunction by inducing processes such as neuroinflammation and oxidative stress. The hippocampus is primarily associated with cognitive functions such as learning and memory.

View Article and Find Full Text PDF

Optical imaging of neuronal voltage dynamics is invaluable to studying brain functions. However, high-speed imaging at significant depth is challenging due to the limitations of the short pixel dwell time and the maximum permissible excitation power in tissues. We report high-speed, deep voltage imaging by applying adaptive excitation, which illuminates the regions of interest only.

View Article and Find Full Text PDF

Putative looping factor ZNF143/ZFP143 is an essential transcriptional regulator with no looping function.

Mol Cell

December 2024

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA. Electronic address:

Interactions between distal loci, including those involving enhancers and promoters, are a central mechanism of gene regulation in mammals, yet the protein regulators of these interactions remain largely undetermined. The zinc-finger transcription factor (TF) ZNF143/ZFP143 has been strongly implicated as a regulator of chromatin interactions, functioning either with or without CTCF. However, how ZNF143/ZFP143 functions as a looping factor is not well understood.

View Article and Find Full Text PDF

The role of uncertain reward in voluntary task-switching as revealed by pupillometry and gaze.

Behav Brain Res

December 2024

Department of Psychological & Brain Sciences, Texas A&M University, Psychology Building, Building 0463, 515 Coke St, College Station, TX 77843, United States of America; Texas A&M Institute for Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building (ILSB), Room 3148 | 3474 TAMU, College Station, TX 77843-3474, United States of America. Electronic address:

Cognitive flexibility, the brain's ability to adjust to changes in the environment, is a critical component of executive functioning. Previous literature shows a robust relationship between reward dynamics and flexibility: flexibility is highest when reward changes, while flexibility decreases when reward remains stable. The purpose of this study was to examine the role of uncertain reward in a voluntary task switching paradigm on behavior, pupillometry, and eye gaze.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!