In this study, the effect of nanoparticle concentration was tested for both CuO and TiO₂ in eutectic mixture of sodium and potassium nitrate. Results showed an enhancement in specific heat capacity () for both types of nanoparticles (+10.48% at 440 °C for 0.1 wt % CuO and +4.95% at 440 °C for 0.5 wt % TiO₂) but the behavior toward a rise in concentration was different with CuO displaying its highest enhancement at the lowest concentration whilst TiO₂ showed no concentration dependence for three of the four different concentrations tested. The production of cluster of nanoparticles was visible in CuO but not in TiO₂. This formation of nanostructure in molten salt might promote the enhancement in . However, the size and shape of these structures will most likely impact the energy density of the molten salt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304634PMC
http://dx.doi.org/10.3390/nano5031136DOI Listing

Publication Analysis

Top Keywords

specific heat
8
heat capacity
8
cuo tio₂
8
440 °c
8
molten salt
8
mechanical dispersion
4
dispersion nanoparticles
4
nanoparticles specific
4
capacity impure
4
impure binary
4

Similar Publications

Functional flexible adsorbents and their potential utility.

Chem Commun (Camb)

January 2025

Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.

Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.

View Article and Find Full Text PDF

The prognostic value of negative regulators of ferroptosis in patients with colorectal cancer (CRC) has not yet been fully elucidated. The present study performed a systematic identification and selection of candidate negative regulators of ferroptosis using The Cancer Genome Atlas data cohort (n=367), followed by clinical validation through immunohistochemistry of samples from patients with CRC (n=166) and further evaluation. analysis identified specific light-chain subunit of the cystine/glutamate antiporter, AIFM2, NFE2L2, FTH1, GLS2, glutathione peroxidase 4 (GPX4) and heat shock protein β-1 (HSPB1) genes as possible candidates.

View Article and Find Full Text PDF

Unlabelled: Chickpea (. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production.

View Article and Find Full Text PDF

Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.

View Article and Find Full Text PDF

Development of micro-nanostructured film with antibacterial, anticorrosive and thermal conductivity properties on copper surface.

Bioelectrochemistry

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!