Assembly and Speed in Ion-Exchange-Based Modular Phoretic Microswimmers.

Langmuir

Institut für Physik, Johannes Gutenberg-Universtät Mainz , Staudingerweg 7, 55128 Mainz, Germany.

Published: April 2017

We report an experimental study on ion-exchange-based modular microswimmers in low-salt water. Cationic ion-exchange particles and passive cargo particles assemble into self-propelling complexes, showing self-propulsion at speeds of several micrometers per second over extended distances and times. We quantify the assembly and speed of the complexes for different combinations of ion-exchange particles and cargo particles, substrate types, salt types and concentrations, and cell geometries. Irrespective of the experimental boundary conditions, we observe a regular development of the assembly shape with increasing number of cargo. Moreover, the swimming speed increases stepwise upon increasing the number of cargo and then saturates at a maximum speed, indicating the active role of cargo in modular swimming. We propose a geometric model of self-assembly to describe the experimental observations in a qualitative way. Our study also provides some constraints for future theoretical modeling and simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b00288DOI Listing

Publication Analysis

Top Keywords

assembly speed
8
ion-exchange-based modular
8
ion-exchange particles
8
cargo particles
8
increasing number
8
number cargo
8
cargo
5
speed ion-exchange-based
4
modular phoretic
4
phoretic microswimmers
4

Similar Publications

Enzyme-powered synthetic colloidal motors hold promising potential for medical applications because of their unique features such as self-propulsion, sub-micrometer size, fuel bioavailability, and structural and functional versatility. However, the key parameters influencing the propulsion efficiency of enzyme-powered colloidal motors still remain unclear. Here, we report the effect of the neck length of urease-powered pentosan flask-like colloidal motors on their kinematic behavior resembling the role of bacterial flagella.

View Article and Find Full Text PDF

AlgaeSperm: Microalgae-Based Soft Magnetic Microrobots for Targeted Tumor Treatment.

Small

January 2025

School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.

Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance.

View Article and Find Full Text PDF

Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons.

Molecules

December 2024

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance.

View Article and Find Full Text PDF

Intestinal microbiota could respond to dietary fibres that are fermented by the gut microbiota, like prebiotics. Nevertheless, the dynamics of intestinal microbial community longitudinally after prebiotics intake, are still largely unknown. The current study unrevealed the successional process of intestinal microbial community after inulin supplementation, and the effect of supplementation dosage thereof, based on analysis of 16S rRNA gene sequences in C57BL/6 mice.

View Article and Find Full Text PDF

Ultrafast, Robust, and Reversible Self-Assembled Nanofibers via Thiolactone Chemistry Strategy.

Small

January 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.

Self-assembly in supramolecular chemistry is crucial for nanostructure creation but faces challenges like slow speeds and lack of reversibility. In this study, a novel comb-like polymer poly(amide sulfide) (PAS) based on thiolactone chemistry is reported, which rapidly self-assemble into stable nanofibers, offering excellent robustness and reversibility in the self-assembled structure. The PAS backbone contains pairs of amide bonds, each linked to an alkyl side chain in a controlled 2:1 ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!