Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus.

PLoS Genet

KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium.

Published: March 2017

Understanding the mechanisms regulating cell cycle, proliferation and potency of pluripotent stem cells guarantees their safe use in the clinic. Embryonic stem cells (ESCs) present a fast cell cycle with a short G1 phase. This is due to the lack of expression of cell cycle inhibitors, which ultimately determines naïve pluripotency by holding back differentiation. The canonical Wnt/β-catenin pathway controls mESC pluripotency via the Wnt-effector Tcf3. However, if the activity of the Wnt/β-catenin controls the cell cycle of mESCs remains unknown. Here we show that the Wnt-effector Tcf1 is recruited to and triggers transcription of the Ink4/Arf tumor suppressor locus. Thereby, the activation of the Wnt pathway, a known mitogenic pathway in somatic tissues, restores G1 phase and drastically reduces proliferation of mESCs without perturbing pluripotency. Tcf1, but not Tcf3, is recruited to a palindromic motif enriched in the promoter of cell cycle repressor genes, such as p15Ink4b, p16Ink4a and p19Arf, which mediate the Wnt-dependent anti-proliferative effect in mESCs. Consistently, ablation of β-catenin or Tcf1 expression impairs Wnt-dependent cell cycle regulation. All together, here we showed that Wnt signaling controls mESC pluripotency and proliferation through non-overlapping functions of distinct Tcf factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386305PMC
http://dx.doi.org/10.1371/journal.pgen.1006682DOI Listing

Publication Analysis

Top Keywords

cell cycle
28
embryonic stem
8
stem cells
8
controls mesc
8
mesc pluripotency
8
cell
7
cycle
7
wnt/tcf1 pathway
4
pathway restricts
4
restricts embryonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!