Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N₂) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but spp. show specificity towards in central and southern Brazil, / in central Mexico and in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (), the genus level for (), () and the New Zealand native spp. () and species level for (), () and (). Specificity for rhizobial species/symbiovar appears to hold for ( sv. ) ( sv. ), (), ( sv. ), ( sv. s) and ( sv. ). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412291 | PMC |
http://dx.doi.org/10.3390/ijms18040705 | DOI Listing |
Biomolecules
January 2025
Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine.
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability.
View Article and Find Full Text PDFSuccessful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México.
Ecology
December 2024
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Symbiotic mutualisms provide critical ecosystem services throughout the world. Anthropogenic stressors, however, may disrupt mutualistic interactions and impact ecosystem health. The plant-rhizobia symbiosis promotes plant growth and contributes to the nitrogen (N) cycle.
View Article and Find Full Text PDFNat Commun
October 2024
Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!