Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Growth arrest and DNA-damage-inducible protein 45β reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage-inducible protein 45β-dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear.
Methods: Adult male Sprague-Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage-inducible protein 45β messenger RNA-targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage-inducible protein 45β, Ro 25-6981 (an NR2B-bearing N-methyl-D-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings.
Results: Nerve ligation-enhanced growth arrest and DNA-damage-inducible protein 45β expression (n = 6) in ipsilateral dorsal horn neurons accompanied with behavioral allodynia (n = 7). Focal knockdown of growth arrest and DNA-damage-inducible protein 45β expression attenuated ligation-induced allodynia (n = 7) by reducing the binding of growth arrest and DNA-damage-inducible protein 45β to the voltage-dependent T-type calcium channel 3.2 subunit promoter (n = 6) that decreased expression of and current mediated by the voltage-dependent T-type calcium channel 3.2 subunit (both n = 6). In addition, NR2B-bearing N-methyl-D-aspartate receptors and calmodulin-dependent protein kinase II act in an upstream cascade to increase growth arrest and DNA-damage-inducible protein 45β expression, hence enhancing demethylation at the voltage-dependent T-type calcium channel 3.2 subunit promoter and up-regulating voltage-dependent T-type calcium channel 3.2 subunit expression. Intrathecal administration of Ro 25-6981, KN-93, or a growth arrest and DNA-damage-inducible protein 45β-targeting small interfering RNA (n = 6) reversed the ligation-induced enrichment of unmodified cytosine at the voltage-dependent T-type calcium channel 3.2 subunit promoter by increasing the associated 5-formylcytosine and 5-carboxylcytosine levels.
Conclusions: By converting 5-formylcytosine or 5-carboxylcytosine to unmodified cytosine, the NR2B-bearing N-methyl-D-aspartate receptor, calmodulin-dependent protein kinase II, or growth arrest and DNA-damage-inducible protein 45β pathway facilitates voltage-dependent T-type calcium channel 3.2 subunit gene demethylation to mediate neuropathic allodynia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0000000000001610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!