Defensin peptides are essential for innate immunity in humans and other living systems, as they provide protection against infectious pathogens and regulate the immune response. Here, we report the solution structure of rattusin (RTSN), an α-defensin-related peptide, which revealed a novel C-symmetric disulfide-linked dimeric structure. RTSN was synthesized by solid-phase peptide synthesis (SPPS) and refolded by air oxidation in vitro. Dimerization of the refolded RTSN (r-RTSN) resulted from five intermolecular disulfide (SS) bond exchanges formed by ten cysteines within two protomer chains. The SS bond pairings of r-RTSN were determined by mass analysis of peptide fragments cleaved by trypsin digestion. In addition to mass analysis, nuclear magnetic resonance (NMR) experiments for a C15S mutant and r-RTSN confirmed that the intermolecular SS bond structure of r-RTSN showed an I-V', II-IV', III-III', IV-II', V-I' arrangement. The overall structure of r-RTSN exhibited a cylindrical array, similar to that of β-sandwich folds, with a highly basic surface. Furthermore, fluorescence spectroscopy results suggest that r-RTSN exerts bactericidal activity by damaging membrane integrity. Collectively, these results provide a novel structural scaffold for designing highly potent peptide-based antibiotics suitable for use under various physiological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366907PMC
http://dx.doi.org/10.1038/srep45282DOI Listing

Publication Analysis

Top Keywords

intermolecular disulfide
8
mass analysis
8
structure r-rtsn
8
r-rtsn
6
rattusin structure
4
structure reveals
4
reveals novel
4
novel defensin
4
defensin scaffold
4
scaffold formed
4

Similar Publications

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Redox modification of mA demethylase SlALKBH2 in tomato regulates fruit ripening.

Nat Plants

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.

View Article and Find Full Text PDF

Amycolatopsis sp. BJA-103 was isolated for its exceptional feather-degradation capability, leading to the purification, cloning, and heterologous expression of the keratinase enzyme, KER0199. Sequence analysis places KER0199 within the S8 protease family, revealing <60 % sequence similarity to known proteases.

View Article and Find Full Text PDF

In this study, the absolute electrostatic charge of myofibrillar protein (MP) was substantially increased by protein-glutaminase (PG) treatment, which was a critical step for achieving the dissociation and solubility of MP under low salt condition. The PG-treated MP exhibited the capacity to form thermo-reversible gels that could be melted through heating and subsequently reformed into a stable gel structure upon refrigeration. The results of SDS-PAGE further revealed that the levels of soluble monomeric myosin and actin in the supernatant of deamidated MP (DMP) gels were markedly elevated, and confirmed the increased formation of intermolecular disulfide bond between myosin and actin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!