Plasmodium knowlesi is increasingly recognized as a major cause of malaria in Southeast Asia. Anopheles leucosphyrous group mosquitoes transmit the parasite and natural hosts include long-tailed and pig-tailed macaques. Despite early laboratory experiments demonstrating successful passage of infection between humans, the true role that humans play in P. knowlesi epidemiology remains unclear. The threat posed by its introduction into immunologically naïve populations is unknown despite being a public health priority for this region. A two-host species mathematical model was constructed to analyse this threat. Global sensitivity analysis using Monte Carlo methods highlighted the biological processes of greatest influence to transmission. These included parameters known to be influential in classic mosquito-borne disease models (e.g. vector longevity); however, interesting ecological components that are specific to this system were also highlighted: while local vectors likely have intrinsic preferences for certain host species, how plastic these preferences are, and how this is shaped by local conditions, are key determinants of parasite transmission potential. Invasion analysis demonstrates that this behavioural plasticity can qualitatively impact the probability of an epidemic sparked by imported infection. Identifying key vector sub/species and studying their biting behaviours constitute important next steps before models can better assist in strategizing disease control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0031182016002456 | DOI Listing |
Nat Commun
December 2024
Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
Plasmodium malariae parasites are widely observed across the tropics and sub-tropics. This slow-growing species, known to maintain chronic asymptomatic infections, has been associated with reduced antimalarial susceptibility. We analyse 251 P.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom.
Background: Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria species on the brain remains unexplored.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France.
Diagnosis of imported malaria is based on microscopic examination of blood smears (BS), detection of circulating plasmodial antigen by immunochromatography (ICT), or detection of spp. DNA by loop mediated isothermal amplification. We have developed duplex ( spp.
View Article and Find Full Text PDFVirus Evol
November 2024
Laboratory of Data Discovery for Health Limited, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China.
The Apicomplexa are a phylum of single-celled eukaryotes that can infect humans and include the mosquito-borne parasite , the cause of malaria. Viruses that infect non- spp. disease-causing protozoa affect the pathogen life cycle and disease outcomes.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa.
is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in , and shown to contribute to malaria pathology, there is currently very limited information on the JDPs (PkJDPs). This review provides a critical analysis of the literature and publicly available data on PkJDPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!