Tumor suppressor miR-29c regulates radioresistance in lung cancer cells.

Tumour Biol

10 Laboratorio de Virus y Cancer, Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia and Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico.

Published: March 2017

Radiotherapy is an important treatment option for non-small cell lung carcinoma patients. Despite the appropriate use of radiotherapy, radioresistance is a biological behavior of cancer cells that limits the efficacy of this treatment. Deregulation of microRNAs contributes to the molecular mechanism underlying resistance to radiotherapy in cancer cells. Although the functional roles of microRNAs have been well described in lung cancer, their functional roles in radioresistance are largely unclear. In this study, we established a non-small cell lung carcinoma Calu-1 radioresistant cell line by continuous exposure to therapeutic doses of ionizing radiation as a model to investigate radioresistance-associated microRNAs. Our data show that 50 microRNAs were differentially expressed in Calu-1 radioresistant cells (16 upregulated and 34 downregulated); furthermore, well-known and novel microRNAs associated with resistance to radiotherapy were identified. Gene ontology and enrichment analysis indicated that modulated microRNAs might regulate signal transduction, cell survival, and apoptosis. Accordingly, Calu-1 radioresistant cells were refractory to radiation by increasing cell survival and reducing the apoptotic response. Among deregulated microRNAs, miR-29c was significantly suppressed. Reestablishment of miR-29c expression in Calu-1 radioresistant cells overcomes the radioresistance through the activation of apoptosis and downregulation of Bcl-2 and Mcl-1 target genes. Analysis of The Cancer Genome Atlas revealed that miR-29c is also suppressed in tumor samples of non-small cell lung carcinoma patients. Notably, we found that low miR-29c levels correlated with shorter relapse-free survival of non-small cell lung carcinoma patients treated with radiotherapy. Together, these results indicate a new role of miR-29c in radioresistance, highlighting their potential as a novel biomarker for outcomes of radiotherapy in lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428317695010DOI Listing

Publication Analysis

Top Keywords

non-small cell
16
cell lung
16
lung carcinoma
16
calu-1 radioresistant
16
lung cancer
12
cancer cells
12
carcinoma patients
12
radioresistant cells
12
resistance radiotherapy
8
functional roles
8

Similar Publications

Brain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer-related deaths in China, and pembrolizumab shows differential efficacy in advanced non-small cell lung cancer (NSCLC) with different PD-L1 expression levels.

Aim: To assess the cost-effectiveness of PD-L1 testing associated with pembrolizumab for first-line treatment of NSCLC from the perspective of Chinese healthcare system.

Method: Over a lifetime horizon, a three-state partitioned survival model was developed to assess the cost-effectiveness of PD-L1 testing and no PD-L1 testing.

View Article and Find Full Text PDF

Background: KRAS inhibitors are revolutionizing the treatment of NSCLC, but clinico-genomic determinants of treatment efficacy warrant continued exploration.

Methods: Patients with advanced KRASG12C-mutant NSCLC treated with adagrasib (KRYSTAL-1-NCT03785249) were included in the analysis. Pre-treatment NGS data were collected per protocol.

View Article and Find Full Text PDF

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!