In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)] redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H/CH/BH and N. Growth results in sharp-edged, flat, and long CNWs rich in sp as well as sp hybridized phases. The achieved high values of k° (1.1 × 10 cm s) and ΔE (85 mV) are much lower compared to those of the glassy carbon or undoped CNWs. The enhanced electrochemical performance of the B:CNW electrode facilitates the simultaneous detection of DNA purine bases: adenine and guanine. Both separated oxidation peaks for the independent determination of guanine and adenine were observed by means of cyclic voltammetry or differential pulse voltammetry. It is worth noting that the determined sensitivities and the current densities were about 1 order of magnitude higher than those registered by other electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b16860DOI Listing

Publication Analysis

Top Keywords

boron-enhanced growth
4
growth micron-scale
4
micron-scale carbon-based
4
carbon-based nanowalls
4
nanowalls route
4
route high
4
high rates
4
rates electrochemical
4
electrochemical biosensing
4
biosensing study
4

Similar Publications

Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing.

ACS Appl Mater Interfaces

April 2017

Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-952 Gdansk, Poland.

In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)] redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H/CH/BH and N. Growth results in sharp-edged, flat, and long CNWs rich in sp as well as sp hybridized phases.

View Article and Find Full Text PDF

This study investigated whether boron would enhance the ability of 17beta-estradiol (E2) or parathyroid hormone (PTH) to improve bone quality in ovariectomized OVX rats. Adult OVX rats were treated for 5 wk with vehicle, boron (5 ppm as boric acid), E2 (30 microg/kg/d, sc), PTH (60 microg/kg/d, sc), or a combination of boron and E2 or PTH, respectively. The E2 treatment corrected many adverse effects of OVX on bone quality, increased bone Ca, P, and Mg contents, and decreased trabecular plate separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!