Solutal and thermal buoyancy effects in self-powered phosphatase micropumps.

Soft Matter

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.

Published: April 2017

Immobilized enzymes generate net fluid flow when exposed to specific reagents in solution. Thus, they function as self-powered platforms that combine sensing and on-demand fluid pumping. To uncover the mechanism of pumping, we examine the effects of solutal and thermal buoyancy on the behavior of phosphatase-based micropumps, using a series of reactants with known thermodynamic and kinetic parameters. By combining modeling and experiments, we perform the first quantitative comparison of thermal and solutal effects in an enzyme micropump system. Despite the significant exothermicity of the catalyzed reactions, we find that thermal effects play a minimal role in the observed fluid flow. Instead, fluid transport in phosphatase micropumps is governed by the density difference between the reactants and the products of the reaction. This surprising conclusion suggests new design principles for catalytic pumps.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm00022gDOI Listing

Publication Analysis

Top Keywords

solutal thermal
8
thermal buoyancy
8
phosphatase micropumps
8
fluid flow
8
effects
4
buoyancy effects
4
effects self-powered
4
self-powered phosphatase
4
micropumps immobilized
4
immobilized enzymes
4

Similar Publications

Femtomolar hydrogen sulfide detection via hybrid small-molecule nano-arrays.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.

Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.

View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry.

View Article and Find Full Text PDF

Bioinspired Heterogeneous Surface for Radiative Cooling Enhanced Power-Free Moisture Harvesting in Unsaturated Atmosphere.

Adv Mater

December 2024

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

The development of zero-power moisture-harvesting technology in an unsaturated atmosphere is of great significance for coping with global freshwater scarcity. Here, inspired by Pachydactylus rangei's (Namib sand gecko) ability to evade thermal radiation and harvest moisture, a power-free cooling moisture harvester (PFCMH) is fabricated using the continuous, industrialized micro-extrusion compression molding. A Luneburg lens is introduced in the PFCMH for the first time, endowing it with a high reflectivity of ≈92.

View Article and Find Full Text PDF

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!