Background: Obesity is a pro-inflammatory state that may predispose patients to acute coronary syndrome characterized by chronic low grade inflammation resulting in endothelial dysfunction (ED). The aim of the study was to evaluate urinary biomarkers of inflammation and ED in adolescents with obesity.

Methods: Sixty three subjects were recruited for the study. Twenty healthy adolescents with normal body mass (NW), 14 overweight (OW), 29 obese (OA) subjects were selected. An EndoPat 2000 device was used to measure the reactive hyperemia index (RHI). First morning fasting urine samples were tested for interleukin 6 (IL-6), endothelin 1 (ET-1), alpha-1-acid glycoprotein (AGP), tumor necrosis factor- α (TNF-α) and corrected to urinary creatinine.

Results: Urinary TNF-α was significantly higher in OA group (52.4 ± 15.3 pg/mg) compared to adolescents with NW (14.1 ± 1.2 pg/mg,  = 0.04). ET-1 levels were found to be higher in OW (5.18 ± 1.6 pg/mg) compared with NW (3 · 47 ± 0.3 pg/mg,  = 0.24); and higher in OA (8.48 ± 3.1 pg/mg) compared to both NW ( = 0.19) and OW ( = 0.40). Similarly a higher AGP level was observed in OW (864.8 ± 156 ng/mg) and OA (808.3 ± 186 ng/mg) compared to NW (653 ± 69 ng/mg) ( = 0.16 & 0.49 respectively). Inflammatory markers namely, TNF-α, IL-6 and AGP significantly and positively correlated with each other and with ET-1, a marker for endothelial dysfunction. This significant correlation was also observed when tested separately in the subgroups (NW, OW and OA). There were no differences in RHI levels among the study groups.

Conclusion: Urinary TNF-alpha is significantly elevated in obese adolescents and correlates with urinary ET-1, which is recognized as a biomarker for endothelial dysfunction. Since obesity is a chronic inflammatory state, elevated urinary TNF-alpha might be used as a non invasive tool to monitor the level of that inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361775PMC
http://dx.doi.org/10.1186/s40608-017-0148-2DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
urinary biomarkers
8
inflammation endothelial
8
obese adolescents
8
urinary tnf-alpha
8
urinary
7
adolescents
5
biomarkers indicator
4
indicator chronic
4
inflammation
4

Similar Publications

Lung endothelial cell senescence impairs barrier function and promotes neutrophil adhesion and migration.

Geroscience

January 2025

Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.

Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).

View Article and Find Full Text PDF

Diosmetin alleviates TNFα-induced liver inflammation by improving liver sinusoidal endothelial cell dysfunction.

Biomed Pharmacother

January 2025

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:

Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.

View Article and Find Full Text PDF

Stay connected: The myoendothelial junction proteins in vascular function and dysfunction.

Vascul Pharmacol

January 2025

Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:

The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).

View Article and Find Full Text PDF

The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms.

Dev Cell

January 2025

Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany. Electronic address:

The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!