Role of oxygen functional groups in reduced graphene oxide for lubrication.

Sci Rep

Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.

Published: March 2017

Functionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient. In this condition, PEG chains intercalate between the functionalized graphene sheets, and shear can take place between the PEG and rGO sheets. However, the friction coefficient was unaffected when hydroxyl-terminated rGO was coupled with PEG. This can be explained by the strong coupling between graphene sheets through hydroxyl units, causing the interaction of PEG with the rGO to be non- effective for lubrication. On the other hand, antiwear properties of hydroxyl-terminated rGO were significantly enhanced compared to epoxy-hydroxyl functionalized rGO due to the integrity of graphene sheet clusters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366868PMC
http://dx.doi.org/10.1038/srep45030DOI Listing

Publication Analysis

Top Keywords

reduced graphene
8
graphene oxide
8
friction coefficient
8
graphene sheets
8
peg rgo
8
hydroxyl-terminated rgo
8
rgo
7
peg
6
graphene
5
role oxygen
4

Similar Publications

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Nano-confined Si@C composites with excellent lithium-ion storage performance derived from a POSS-based covalent framework and low-temperature reduction method.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.

View Article and Find Full Text PDF

Moyamoya is a non-atherosclerotic intracranial steno-occlusive condition that places patients at high risk for ischaemic stroke. Randomized trials of surgical revascularization demonstrating efficacy in ischaemic moyamoya have not been performed, and as such, biomarkers of parenchymal haemodynamic impairment are needed to assist with triage and evaluate post-surgical response. In this prospective study, we test the hypothesis that parenchymal cerebrovascular reactivity (CVR) metrics in response to a fixed-inspired 5% carbon dioxide challenge correlate with recent focal ischaemic symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!